The elements of sets \(A\) and \(B\) are shown in the adjoining Venn diagram.
State whether the sets \(A\) and \(B\) are overlapping or disjoint. Give a reason.[1]
Write two proper subsets of set \(A\).[1]
What needs to be done to make the given sets disjoint?[1]
Sets \(A\) and \(B\) are overlapping sets.
Because they share the common element \(3\), i.e., \(A \cap B = \{3\} \neq \emptyset\).
From the Venn diagram, \(A = \{2, 3\}\).
Two proper subsets of \(A\) are: \(\{2\}\) and \(\{3\}\).
Number of Elements
Proper Subsets
Count
0
\(\emptyset\)
1
1
\(\{2\}, \{3\}\)
2
Total Proper Subsets
3
To make sets \(A\) and \(B\) disjoint, the common element \(3\) must be removed from either set \(A\) or set \(B\) (or both).
For example Remove \(3\) from \(A\): Then \(A = \{2\}\), \(B = \{3, 4\}\) → disjoint Remove \(3\) from \(B\): Then \(A = \{2, 3\}\), \(B = \{4\}\) → disjoint
Grishma has a book of 150 pages.
Write the number of pages in scientific notation.[1]
Write the number of pages in the quinary number system.[1]
Write the number of pages in the binary number system.[1]
If she has read 15 pages, find the ratio of the completed pages to the remaining pages.[1]
Ganesh buys a mobile at Rs 36000. He fixed the marked price of the mobile \(30\%\) above the cost price. If he sells the mobile at a \(25\%\) discount, then
What is the marked price of the mobile?[1]
What is the discount amount?[1]
What is the selling price of the mobile?[1]
What is his profit or loss percent from that mobile? Find it.[1]
Marked price of the mobile:
Cost Price (CP) = Rs. \(36,000\)
Marked Price (MP) is \(30\%\) above CP: MP = \( \dfrac{130}{100} \times 36,000 = 1.3 \times 36,000 = 46,800 \)
So, the marked price is Rs. \(46,800\).
Discount amount:
Discount = \(25\%\) of MP = \( \dfrac{25}{100} \times 46,800 = 11,700 \)
So, the discount amount is Rs. \(11,700\).
Selling price of the mobile:
SP = MP – Discount = \(46,800 - 11,700 = 35,100\)
So, the selling price is Rs. \(35,100\).
Profit or loss percent:
CP = Rs. \(36,000\)
SP = Rs. \(35,100\)
Since SP < CP, there is a loss.
Loss = \(36,000 - 35,100 = 900\)
Thus Loss Percent = \( \dfrac{900}{36,000} \times 100\% = 2.5\% \)
So, Ganesh incurred a loss of \(2.5\%\).
Santosh borrowed a sum of Rs 7,000 from his friend Roopal. He paid an interest of Rs 1,400 to Roopal at the end of 2 years.
Write the formula to find the rate of interest.[1]
At which rate of interest did Santosh borrow the sum?[1]
At the same rate of interest, calculate the interest for 5 years.[1]
If Santosh had not paid any interest till the end of 5 years, how much amount would he need to clear the debt?[2]
Formula to find the rate of interest: Rate (R) = \( \dfrac{I \times 100}{P \times T} \)
Rate of interest:
Principal (P) = Rs. 7,000
Time (T) = 2 years
Interest (I) = Rs. 1,400
Thus, Rate (R) = \( \dfrac{1,400 \times 100}{7,000 \times 2} = 10\% \)
So, the rate of interest is 10% per annum.
Interest for 5 years:
Time (T) = 5 years
Rate (R) = 10%
Thus, Interest (I) = \( \dfrac{7,000 \times 5 \times 10}{100} = 3,500 \)
So, the interest for 5 years is Rs. 3,500.
Amount to clear debt after 5 years:
Principal (P) = Rs. 7,000
Interest for 5 years (I) = Rs. 3,500
Thus, Amount (A) = P + I = 7,000 + 3,500 = 10,500
So, he would need Rs. 10,500 to clear the debt.
The perimeter of a square land is 440 ft.
Write the formula for the perimeter of a square. [1]
Find the length of the land. [1]
Find the cost of levelling the land at the rate of Rs 50 per \( \text{ft}^2 \). [2]
How much does it cost to fence the land at the rate of Rs 70 per foot? [1]
Perimeter of a square formula
We know that, Perimeter (\( P \)) = \( 4l \) (where \( l \) is the length of a side)
Length of the land
Given that, Perimeter (\( P \)) = 440 ft
Now using the formula, we get \( 4l = 440 \)
or \( l = \frac{440}{4} = \) 110 ft
Cost of levelling the land
We know that, Area of land (\( A \)) = \( l^2 = 110^2 = \) 12100 sq. ft
According to the question, the rate is Rs 50 per sq. ft, so Total Cost = \( 12100 \times 50 = \) Rs 6,05,000
Cost of fencing the land
Given that, Perimeter (\( P \)) = 440 ft
According to the question, the rate is Rs 70 per foot, so Total Cost = \( 440 \times 70 = \) Rs 30,800
For what power of \(4\) does the value become \(\dfrac{1}{64}\)?[1]
If \(a = 1\), \(b = 2\), and \(c = 3\), find the value of \(a^{b} \times b^{c} \times c^{a}\).[2]
For what value of \(a\), \(\dfrac{3}{a - 5}\) is undefined?[1]
If two algebraic expressions are \(a^{2} - 3a + 2\) and \(a^{2} - 9a + 10\),
Find the Highest Common Factor (H.C.F.).[2]
Solve the equation \(x^{2} - 6x + 8 = 0\) by the factorization method.[2]
From the adjoining figure,
Write the name of a pair of alternate angles.[1]
What is the value of \(x\)?[2]
Calculate the value of \(y\).[1]
Construct a square \(ABCD\) in which side \(AB = 6cm\).[3]
In the adjoining figure, \(\angle RPQ = \angle PQS\) and \(QS = PR\). Show that \(\triangle PQR \cong \triangle QPS\).[2]
Write the formula to calculate the distance between two points.[1]
Find an interior angle of a regular pentagon.[2]
\(A(2,1)\), \(B(-4,5)\), and \(C(2,3)\) are the vertices of \(\triangle ABC\). Find the vertices of the image \(\triangle A'B'C'\) after reflecting \(\triangle ABC\) on the \(x\)-axis using a graph.[3]
Study the following table and solve the given problems:
Class
V
VI
VII
VIII
Total
No. of students
\(53\)
\(43\)
\(46\)
\(50\)
\(192\)
Present the above information in a pie chart.[2]
What is the average number of students per class?[1]
No comments:
Post a Comment