Fundamental Cofficients of Surface








Some Common Example of Surface
  1. Plane surface
    az = 1.00
    el = 0.30

    Plane is a surface traced by a straight line whose parameters are of degree 1. One example of plane surface is given by
    r=(u,v,u+v)
  2. Cylinder
    az = 1.00
    el = 0.30

    Cylinder is a surface traced by a straight line being parallel to a fixed vector. It is given by an equation
    r=(rcosu,rsinu,v)
  3. Cone
    az = 1.00
    el = 0.30

    Cone is a surface traced by a straight line being fixed to a fixed point. It is given by an equation
    r=(vcosu,vsinu,v)
  4. Paraboloid
    r=(u,v,u2+v2)
  5. Hyperboloid
    r=(x,y,x2y2)
  6. Minimal surface
    r=(x,y,logcosylogcosx)
  7. The helicoid
    r=(ucosv,usinv,v)
  8. Pseduo-sphere
    r=(sechucosv,sechusinv,utanh)
  9. Monge’s form
    r=(u,v,f(u,v))
  10. Surface of revolution
    r=(ucosv,usinv,f(u))
  11. Conoidal surface
    r=(ucosv,usinv,f(v))
  12. Saddle surface
    r=(u,v,uv)



Compute Fundamental Cofficients of surface

Compute fundamental coefficients for a saddle surface r=(u,v,uv)
Solution
The saddle surface is
r=(u,v,uv)(i)
Differentiation of (i) w. r. to. u and v, we get
r1=(1,0,v)
r2=(0,1,u)
r11=(0,0,0)
r12=(0,0,1)
r22=(0,0,0)
Here, we used the suffix 1 and 2 for derivatives with respect to u and v and respectively, and similarly for higher derivatives.
Now, first order fundamental coefficients are
E=r12=(1,0,v)2=1+v2
F=r1.r2=(1,0,v).(0,1,u)=uv
G=r22=(1,0,u)2=1+u2
Next,we have to compute second fundamental cofficients,for this
HN=r1×r2
or HN=(1,0,v)×(0,1,u)
or HN=(v,u,1) (A)
Taking magnitude, we get
H=1+u2+v2
And substituting H in (A) we get
N=(v,u,1)1+u2+v2
Hence, the second order fundamental coefficients are
L=r11.N=(0,0,0).(v,u,1)1+u2+v2=0
M=r12.N=(0,0,1).(v,u,1)1+u2+v2=11+u2+v2
N=r22.N=(0,0,0).(v,u,1)1+u2+v2=0
This completes the solution


Find fundamental coefficients of following surface

  1. Monge’s form: r=(x,y,f(x,y))

    Answer:
    N={f11+f12+f22,f21+f12+f22,11+f12+f22}
    Cofficients: {1+f12,f1f2,1+f22,f111+f12+f22,f121+f12+f22,f221+f12+f22}

  2. Surface of revolution: r=(ucosv,usinv,f(u))

    Answer:
    N={f1ucosvH,f1usinvH,uH}
    Cofficients: {1+f12,0,u2,f11uH,0,f1u2H}

  3. Conoidal surface:r=(ucosv,usinv,f(v))

    Answer:
    N={f2sinvH,f2cosvH,uH}
    Cofficients: {1,0,f22+u2,0,f2H,f22uH}

  4. Right helicoid: r=(ucosv,usinv,cv)

    Answer:
    N={csinvH,ccosvH,uH}
    Cofficients: {1,0,c2+u2,0,cH,0}

  5. Plane surface: r=(u,v,u+v)

    Answer:
    N={12,12,0}
    Cofficients: {3,1,1,0,0,0}

  6. Saddle surface: r=(u,v,uv)

    Answer:
    N={v1+u2+v2,u1+u2+v2,11+u2+v2}
    Cofficients: {1+v2,uv,1+u2,0,11+u2+v2,0}

  7. Saddle surface: r=(u+v,uv,uv)

    Answer:
    N={u+v22+u2+v2,u+v22+u2+v2,22+u2+v2}
    Cofficients: {2+v2,uv,2+u2,0,22+u2+v2,0}

  8. Paraboloid:r=(u,v,u2+v2)

    Answer:
    N={v2,v2,0}
    Cofficients: {a2,0,1,a,0,0}

  9. Cylinder: r=(acosu,asinu,v)

    Answer:
    N={cosu,sinu,0}
    Cofficients: {2+4u2,4uv,4v2,0,0,0}

  10. Cone: r=(vcosu,vsinu,v)

    Answer:
    N={vcosu2,vsinu2,v2}
    Cofficients: {v2,0,2,v22,0,0}

  11. Sphere: r=(sinucosv,sinusinv,cosu)

    Answer:
    N={cosvsin2uH,sin2usinvH,cosusinuH}
    Cofficients: {1,0,sin2u,sinuH,0,sin3uH}

  12. Hyperboloid: 2z=7x2+6xyy2at origin

    Answer:
    N={0,0,1}
    Cofficients: {1,0,1,7,3,1}

  13. Minimal surface: ezcosx=cosy

    Answer:
    N={tanxH,tanyH,1H}
    Cofficients: {sec2x,tanxtany,sec2y,sec2xH,0,sec2yH}




No comments:

Post a Comment