Cardinality of set
मानौ \(A\) एउटा समुह हो, समुह \( A \) मा भएका सबै सदस्यहरुको सँख्यालाई cardinality (or cardinal number ) of \( A \) भनिन्छ ।
यसलाई \(n(A) \) अथवा \( |A|\) अथवा \( \text{Card}(A)\) संकेतले जनाईन्छ।
जस्तै
If \( A = \{x: x < 4, x \in \mathbb{W} \} \) then \( A =\{0, 1, 2, 3\}\) and \(n (A) = 4\).
सामान्य रूपमा, समुहको cardinality ले तलका गुणहरू जनाउदछ।
यसलाई \(n(A) \) अथवा \( |A|\) अथवा \( \text{Card}(A)\) संकेतले जनाईन्छ।
जस्तै
If \( A = \{x: x < 4, x \in \mathbb{W} \} \) then \( A =\{0, 1, 2, 3\}\) and \(n (A) = 4\).
सामान्य रूपमा, समुहको cardinality ले तलका गुणहरू जनाउदछ।
- प्रत्येक समूहको एक मात्र cardinal सङ्ख्या हुन्छ।
- दुई वटा equivalent समूहको cardinal सङ्ख्या एउटै हुन्छ।
- गन्ती गर्न सकिने समूहको cardinal सङ्ख्या \(n\) हुन्छ।
- गणनायोग्य (denumerable) समूहको cardinal सङ्ख्या ‘एलेफ नल’ \(\aleph_0\) हुन्छ।
- गन्ती गर्न नसकिने (uncountable) समूहको cardinal सङ्ख्या \(c\) हुन्छ।
Find the cardinality of the following sets.
- \(A = \{1, 4, 9, 16\}\)
- \(B = \{1, 2, 3, 4, 5, \ldots, 15\}\)
- \(C = \{2, 4, 6, 8\}\)
- \(D = \{0, 1, 2, 3, 4, 5, \ldots, 10\}\)
- \(E = \{1, 2, 4, 5, 10, 20\}\)
A
What is the cardinal number of set A?
कक्षाकोठामा भएका बिद्यार्थी वा बस्तु लाई प्रयोग गरि बनाईएका फरक फरक समुहहरुको cardinality सँख्या पत्ता लगाउन लगाउनुहोस।
Let \(P = \{x : x \text{ is a natural number, } x \leq 20\}\), \(Q = \{x : x \text{ is a factor of } 20\}\) and \(R = \{z : z \text{ is a multiple of } 3, z ≤ 20\}\), then.
- List the elements of the sets \(P,Q,R\)
- List the common elements of the sets \(P,Q\)
- Identify the cardinality of common elements of the sets \(P,Q\)
- The elements of the sets \(P, Q, R\) are
\(P = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}\)
\(Q = \{1, 2, 4, 5, 10, 20\}\)
\(R = \{3, 6, 9, 12, 15, 18\}\) - The common elements of the sets \(P\) and \(Q\) is
\( \{1, 2, 4, 5, 10, 20\} \) - The cardinality of common elements of the sets \(P, Q\) is
\(6\)
The factor-cards given below.
1
2
3
4
6
12
1
2
3
6
9
18
- Write the set of factors of 12 (\(F_{12}\)) in listing method.
- Write the set of factors of 18 (\(F_{18}\)) in listing method.
- Write the set of factors of 18 (\(F_{18}\)) in set-builder method.
- List the common elements of \(F_{12}\) and \(F_{18}\) in a separate set \(P\) and write its cardinal number.
- The set of factors of 12 (\(F_{12}\)) in listing method is
\(F_{12} = \{1, 2, 3, 4, 6, 12\}\) - The set of factors of 18 (\(F_{18}\)) in listing method is
\(F_{18} = \{1, 2, 3, 6, 9, 18\}\) - The set of factors of 18 (\(F_{18}\)) in set-builder method is
\(F_{18} = \{x : x \text{ is a positive integer and } x \text{ divides } 18\}\)
or\(F_{18} = \{x : x \mid 18,\ x \in \mathbb{N}\}\) - The common elements of \(F_{12}\) and \(F_{18}\) in a separate set \(P\) is
\(P = \{1, 2, 3, 6\}\)
The cardinal number of \(P\) is
\(n(P) = 4\)
The multiple-cards given below show first five multiples of 4 and 7.
4
8
12
4
16
20
7
14
21
28
35
- Write the set of the first five multiples of 4 (\(M_4\)) and 7 (\(M_7\)) in listing method.
- Write the sets \(M_4\) and \(M_7\) in set-builder method.
- Write a set \(A\) taking the common elements of \(M_4\) and \(M_7\).
- What is cardinality of set \(A\)?
- The set of the first five multiples of 4 (\(M_4\)) and 7 (\(M_7\)) in listing method are
\(M_4 = \{4, 8, 12, 16, 20\}\)
\(M_7 = \{7, 14, 21, 28, 35\}\)
- The sets \(M_4\) and \(M_7\) in set-builder method are
\(M_4 = \{x : x = 4n,\ n \in \mathbb{N},\ 1 \leq n \leq 5\}\)
\(M_7 = \{x : x = 7n,\ n \in \mathbb{N},\ 1 \leq n \leq 5\}\)
- The set \(A\) taking the common elements of \(M_4\) and \(M_7\) is
\(A = \{\}\) or \(A = \varnothing\)
- The cardinality of set A is 0.
No comments:
Post a Comment