Study the given Venn-diagram, and find the elements and cardinality of tabulated sets.
Based on Venn-diagram with labeled cardinality, find cardinality of tabulated sets.
Based on the Venn-Diagram given below, compute the cardinality of sets as mentioned below.
| SN | Set Notation | ||||
| 1 | \(A_0\) | ||||
| 2 | \(B_0\) | ||||
| 3 | \(C_0\) | ||||
| 4 | \((A \cap B)_0\) |
\((A \cap B)_0=\{1,2\}\) \(n_o(A \cap B)=2\) |
\((A \cap B)_0=\{1\}\) \(n_o(A \cap B)=1\) |
\((A \cap B)_0=\{b\}\) \(n_o(A \cap B)=2\) |
\((A \cap B)_0=\{a,b,c\}\) \(n_o(A \cap B)=3\) |
| 5 | \((B \cap C)_0\) | ||||
| 6 | \((A \cap C)_0\) | ||||
| 7 | \((A \cap B \cap C)\) | ||||
| 8 | \(A\) | ||||
| 9 | \(B\) | ||||
| 10 | \(C\) | ||||
| 11 | \((A \cap B)\) | ||||
| 12 | \((B \cap C)\) | ||||
| 13 | \((A \cap C)\) | ||||
| 14 | \(A \cup B\) | ||||
| 15 | \(B \cup C\) | ||||
| 16 | \(A \cup C\) | ||||
| 17 | \(A \cup B \cup C\) | ||||
| 18 | कम्तिमा एक समुहमा पर्ने सदस्य | ||||
| 19 | कम्तिमा दुई समुहमा पर्ने सदस्य | ||||
| 20 | कम्तिमा तिन समुहमा पर्ने सदस्य | ||||
| 21 | बढिमा एक समुहमा पर्ने सदस्य | ||||
| 22 | बढिमाा दुई समुहमा पर्ने सदस्य | ||||
| 23 | बढिमा तिन समुहमा पर्ने सदस्य | ||||
| 24 | ठिक एक समुहमा पर्ने सदस्य | ||||
| 25 | ठिक दुई समुहमा पर्ने सदस्य | ||||
| 26 | ठिक तिन समुहमा पर्ने सदस्य | ||||
| 27 | \( (A \cup B)-C\) | ||||
| 28 | \( (B \cup C)-A\) | ||||
| 29 | \( (A \cup C)-B\) | ||||
| 30 | \( \overline{(A \cup B \cup C)}\) |
Based on Venn-diagram with labeled cardinality, find cardinality of tabulated sets.
| SN | Set Notation | ||||
| 1 | \(n(A_0)\) | ||||
| 2 | \(n(B_0)\) | ||||
| 3 | \(n(C_0)\) | ||||
| 4 | \(n_o(A \cap B)\) | \(n_o(A \cap B)=d\) | \(n_o(A \cap B)=q\) | \(n_o(A \cap B)=y\) | \(n_o(A \cap B)=1\) |
| 5 | \(n_o(B \cap C)\) | ||||
| 6 | \(n_o(A \cap C)\) | ||||
| 7 | \(n(A \cap B \cap C)\) | ||||
| 8 | \(n(A)\) | ||||
| 9 | \(n(B)\) | ||||
| 10 | \(n(C)\) | ||||
| 11 | \(n(A \cap B)\) | ||||
| 12 | \(n(B \cap C)\) | ||||
| 13 | \(n(A \cap C)\) | ||||
| 14 | \(n(A \cup B)\) | ||||
| 15 | \(n(B \cup C)\) | ||||
| 16 | \(n(A \cup C)\) | ||||
| 17 | \(n(A \cup B \cup C)\) | ||||
| 18 | n(कम्तिमा एक समुहमा पर्ने सदस्य ) | a+b+c+d+e+f+g | p+q+r+s+t | x+y+z | 1+2+3+4 |
| 19 | n(कम्तिमा दुई समुहमा पर्ने सदस्य ) | ||||
| 20 | n(कम्तिमा तिन समुहमा पर्ने सदस्य ) | ||||
| 21 | n(बढिमा एक समुहमा पर्ने सदस्य ) | ||||
| 22 | n(बढिमाा दुई समुहमा पर्ने सदस्य ) | ||||
| 23 | n(बढिमा तिन समुहमा पर्ने सदस्य ) | ||||
| 24 | n(ठिक एक समुहमा पर्ने सदस्य ) | ||||
| 25 | n(ठिक दुई समुहमा पर्ने सदस्य ) | ||||
| 26 | n(ठिक तिन समुहमा पर्ने सदस् )य | ||||
| 27 | \( n[(A \cup B)-C]\) | a+d+b | p+q+r | y+z | 1+2 |
| 28 | \( n[(B \cup C)-A]\) | ||||
| 29 | \( n[(A \cup C)-B]\) | ||||
| 30 | \( n(\overline{A \cup B \cup C})\) |
Based on the Venn-Diagram given below, compute the cardinality of sets as mentioned below.
- \(n(A) \)
- \(n(B) \)
- \(n(C) \)
- \(n(A \cap B) \)
- \(n(A \cap C) \)
- \(n(B \cap C) \)
- n(Exactly one)
- n(Exactly two)
- n(Exactly three)
- n(At least one)
- n(At least two)
No comments:
Post a Comment