Introduction
In Mathematics, limit is defined as a value that a function approaches for the given point. It is always concerns about the behavior of a function at a particular point.
Meaning of \( x\to a \)
Consider a function
\(f(x)= \frac{x^2-1}{x-1}\)
We know that function is NOT defined at x=1. However, what happens to f(x) near the value x=1?
If we substitute small values for x, then we find that the value of f(x) is approximately 2 near at x=1
|
x<1 |
|
x>1 |
x |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
1 |
1.1 |
1.2 |
1.3 |
1.4 |
1.5 |
f(x) |
1.5 |
1.6 |
1.7 |
1.8 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
2.4 |
2.5 |
The closer that x gets to 1, the closer the value of the function f(x) to 2.
In such cases, we call it
f(x)=2 as x tends to 1
Intuitive Definition of Limit
Let 𝑓(𝑥) be a function defined at all values in an open interval containing a, with the possible exception of "a" itself, and let L be a real number.
Then we say that \( \displaystyle \lim_{x \to a} f(x) =L\) if
for a given number \(\epsilon > 0\), there exists a number \(\delta > 0\)such that
|f(x)-L|<\(\epsilon\) whenever |x-a|<\(\delta\)
In this definition
- Given a number L, we choose ε-neighbourhood of L, ε is positive AND can be small enough as we like such that |f(x) - L|< ε
- Now, we will try to find, δ-neighbourhood of a, δ is positive AND can be small enough as satisfied such that |x - a|< δ
- If a small change in ε implies a small change δ, then the limit exists at a.
- If a small change in ε implies a LARGE change δ, then the limit does NOT exist at a.
How to use the applet
- Click on the "Show δ-neighbourhood of 'a'" check box.
- Given a number a, adjust δ-neighbourhood of a (drag the point a or the slider δ) , so that |x - a|< δ , where x is any point inside the δ-neighbourhood
- Now, Click on the "Show ε-neighbourhood of 'L'" check box.
- Try to find ε-neighbourhood of L (largest distance from L) , such that |f(x) - L|< ε , where f(x) is any point inside the ε-neighbourhood and the result is valid for all |x - a|< δ
सबै |x - a|< δ को लगी |f(x) - L|< ε हुने गरि ε-zone बानउन सकिन्छ भने limit exist हुन्छ ।
Once a ε is found, any higher ε is always accepted.
Once a δ is satisfied, any smaller δ is always accepted.
More Explanation
The intuitive definition says that
- determine a number δ>0
- take any x in the region, i.e. between a+δ and a−δ, then this x will be closer to a, that is |x-a|<δ
- identify the point on the graph that our choice of x gives, then this point on the graph will lie in the intersection of the ε region. This means that this function value f(x) will be closer to L , that is |f(x)-L|<ε
Means
if we take any value of x in the δ region then the graph for those values of x will lie in the ε region.
- Once a δ is found, any smaller delta is acceptable, so there are an infinite number of possible δ's that we can choose.
- the function has limit at given x
Empirical Definition of Limit
Let 𝑓(𝑥) be a function defined at all values in an open interval containing a, with the possible exception of "a" itself, and let L be a real number.
Then we say that \( \displaystyle \lim_{x \to a} f(x) =L\) if
all of the following three conditions hold
- \( \displaystyle \lim_{x \to a^{-}} f(x) \) exists=LHS
- \( \displaystyle \lim_{x \to a^{+}} f(x) \) exists=RHS
- LHS=RHS
For Example
- In Figure (1). We see that the graph of f(x) has a hole at a. In fact, f(a) is undefined.[Limit exists at x=2]
- In Figure (2), f(a) is defined, but the function has a jump at a.[Limit does NOT exist at x=2]
- In Figure (3), f(a) is defined, but the function has a gap at a.[Limit exists at x=2]
|
|
|
\( f(x)=\frac{x^2-1}{x-1}\) | \( \small {f(x)= \begin{cases} x+1 & \text{for } x ≤ 2 \\ x+2 & \text{for } x > 2 \end{cases}} \) | \( \small { f(x)= \begin{cases} x+1 & \text{for } x \ne 2 \\ 4 & \text{for } x = 2 \end{cases}} \) |
The term "indeterminate" in mathematics refers to a situation where the value of an expression cannot be determined or uniquely identified based solely on its form or appearance.
- \(\frac{0}{0}\)
In the case of the expression "\(\frac{0}{0}\)" it is called indeterminate because it doesn't provide enough information to definitively determine the value of the expression.
For example
\(\frac{1}{1}=1\) |
\(\frac{1}{0}=\infty\) |
\(\frac{0}{1}=0\) |
\(\frac{2}{2}=1\) |
\(\frac{2}{0}=\infty\) |
\(\frac{0}{2}=0\) |
\(\frac{3}{3}=1\) |
\(\frac{3}{0}=\infty\) |
\(\frac{0}{3}=0\) |
… |
… |
… |
\(\frac{a}{a}=1\) |
\(\frac{a}{0}=\infty\) |
\(\frac{0}{a}=0\) |
\(\frac{0}{0}=1\) |
\(\frac{0}{0}=\infty\) |
\(\frac{0}{0}=0\) |
Here, \(\frac{0}{0}\) creates a situation where there is uncertainty about how the fraction \(\frac{0}{0}\) as a whole behaves. In other words, knowing that both the numerator and denominator are approaching zero doesn't immediately mean \(\frac{0}{0}\) will approach a specific finite value, approach infinity, or approach zero. The behavior of the fraction depends on the specific functions involved and how they approach zero.
-
\(\frac{\infty}{\infty}\)
Usually \(\frac{\infty}{number}=\infty\) and \(\frac{number}{\infty}=0\). So the top pulls the limit up to infinity and the bottom tries to pull it down to 0. So who wins?
-
\(0.\infty\)
Usually 0 · (number) = 0 and (number) · ∞ = ∞. So one piece tries to pull the limit down to zero, and the other tries to pull it up to ∞. Does one side win?
-
\(\infty-\infty\)
In general ∞ − (number) = ∞, but (number) − ∞ = −∞. So who wins?
-
\(\infty^{0}\)
In general ∞ raised to any positive power should be equal to ∞, ∞ raised to a negative power is 0, and anything raised to the zero should be equal to 1. So who wins?
-
\(1^{\infty}\)
Usually 1 raised to any power is just equal to 1. But fractions raised to the ∞ goes to zero, and numbers larger than 1 raised to the ∞ should go off to ∞. So where does \(1^{\infty}\) go?
-
\(0^{0}\)
In general zero raised to any positive power is just zero, but but anything raised to the zero should be equal to 1. So which is it?
Limit of algrabic function
- \( \displaystyle \lim_{x\to a}\frac{x^n-a^n}{x-a}=n{a^{n-1}}\)
Solution
We know that
\( \frac{x^n-a^n}{x-a}=\frac{(x-a)(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})}{x-a}\)
or
\( \frac{x^n-a^n}{x-a}=(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})\)
Thus, taking limit as \( x \to a\), we get
\(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=\lim_{x\to a}(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})\)
or
\(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=(a^{n-1}+a.a^{n-2}+a^2.a^{n-3}+...+a^{n-1})\)
or
\(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=n a^{n-1}\)
This completes the proof
Limit of trigonometric function
Trigonometry is branch of mathematics that deals about Triangle. The trigonometric ratio with reference to an angle x is called trigonometric function. For example,
f(x)= sinx
In this section we learn about two very specific but important trigonometric limits, and how to use them; and other tricks to find most other limits of trigonometric functions. The first involves the sine function, and the limit is
\(\displaystyle \lim_{\theta \to 0}\frac{\sin \theta }{\theta}=1\)
Here's a graph of \(f(x)=\frac{\sin x }{x}\), showing that it has a hole at x = 0. Our task in this section will be to prove that the limit from both sides of this function is 1.
Theorems on Limit of trigonometric function
Area if triangle \(OPM=\frac{1}{2} \sin \theta \cos \theta\)
त्रिभुजको क्षेत्रफल 1/2 * आधार * उचाई हुने भएकोले \(\triangle OPM=\frac{1}{2} \sin \theta \cos \theta\) हुन्छ ।
Area if sector \(OPB=\frac{1}{2} \theta\)
वृतको चाँदक्षेत्रको क्षेत्रफल 1/2 * अर्धव्यास
2 * केन्द्रिय कोण हुने भएकोले sector \(OPB=\frac{1}{2} \theta\) हुन्छ ।
Area if triangle \(OBA=\frac{1}{2} \tan \theta\)
त्रिभुजको क्षेत्रफल 1/2 * आधार * उचाई हुने भएकोले \( \triangle OBA=\frac{1}{2} \tan \theta\) हुन्छ ।
In the figure above
Area of triangle OMP=\(\frac{1}{2} \sin \theta \cos \theta\)
Area of sector OAP=\(\frac{1}{2} \theta \)
Area of triangle OAB=\(\frac{1}{2} \tan \theta\)
Now
Area of triangle OMP \(\le\) Area of sector OAP \(\le\) Area of triangle OAB
or
\(\frac{1}{2} \sin \theta \cos \theta \le \frac{1}{2} \theta \le \frac{1}{2} \tan \theta \)
or
\(\sin \theta \cos \theta \le \theta \le \tan \theta \)
or
\(\cos \theta \le \frac{\theta}{\sin \theta } \le \frac{1}{\cos \theta} \)
or
\(\frac{1}{\cos \theta} \ge \frac{\sin \theta }{\theta} \ge \cos \theta \)
Taking limit as \( \theta \to 0\), we get
\( \displaystyle \lim_{\theta \to 0} \frac{1}{\cos \theta} \ge \lim_{\theta \to 0}\frac{\sin \theta }{\theta} \ge \lim_{\theta \to 0} \cos \theta \)
or \( \displaystyle \frac{1}{\cos 0} \ge \lim_{\theta \to 0}\frac{\sin \theta }{\theta} \ge \cos 0 \)
or \( \displaystyle \frac{1}{1} \ge \lim_{\theta \to 0}\frac{\sin \theta }{\theta} \ge 1 \)
or \( \displaystyle 1 \ge \lim_{\theta \to 0}\frac{\sin \theta }{\theta} \ge 1 \)
or \( \displaystyle \lim_{\theta \to 0}\frac{\sin \theta }{\theta}=1 \)
This completes the proof.
More Theorems on Limit of trigonometric function
-
The another important limit involves the cosine function, specifically the function
\(\displaystyle \lim_{\theta \to 0}\frac{\cos \theta -1}{\theta}=0\)
Here's a graph of \(f(x)=\frac{\cos x-1}{x}\), showing that it has a hole at x = 0. Our task in this section will be to prove that the limit from both sides of this function is 0.
Prove that \(\displaystyle \lim_{x \to 0}\frac{1- \cos x}{x}=0 \)
Solution
The limit is
\(\displaystyle \lim_{x \to 0}\frac{1- \cos x}{x} \)
or \(\displaystyle \lim_{x \to 0}\frac{1- \cos x}{x} \times \frac{1+ \cos x}{1+ \cos x} \)
or \(\displaystyle \lim_{x \to 0}\frac{1- \cos^2 x}{x(1+ \cos x)} \)
or \(\displaystyle \lim_{x \to 0}\frac{\sin^2 x}{x(1+ \cos x)} \)
or \(\displaystyle \lim_{x \to 0}\frac{\sin x}{x} \times \lim_{x \to 0} \frac{\sin x}{1+ \cos x}\)
or \( 1 \times \frac{0}{1+ 1}\)
or 0
This completes the proof
- \(\displaystyle \lim_{x \to 0} \sin x=0\)
- \(\displaystyle \lim_{x \to 0} \cos x=1\)
- \(\displaystyle \lim_{x \to 0}\frac{\tan x}{x}=1\)
Limit of Exponential function
A function of the form \(f (x) = a^x\) where base ‘a’ is constant (a>0) and the exponent ‘x’ is variable, is called exponential function.
For example,
\(f (x) = 2^x\)
is an exponential function.
Graph of two exponential function \(2^x, 2^{-x} \)
The great Swiss mathematician Leonhard Euler (1707-1783) has introduced the number e (e = 2.7182818284….). This value e is useful to define exponential function.
The function \(f(x)=e^x\) is called standard exponential function.
In this definition of \(f(x)=e^x\)
- Domain of \(f (x) = \{-\infty , \infty \}\)
- Range of \(f (x) = \{0, \infty \}\)
Graph of two exponential function \(e^x, e^{-x} \)
Theorem on Limit of exponential function
-
Prove that \(\displaystyle \lim_{x \to \infty} \left( 1+\frac{1}{x} \right )^x =e\)
Solution
We know that
1. \(e=1+1!+\frac{1}{2!}+\frac{1}{3!}+...\)
2. \( (1+x)^n=1+nx+\frac{n)n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+...\)
Thus
\(\left( 1+\frac{1}{x} \right )^x =1+ x \frac{1}{x} +\frac{x(x-1)}{2!} \left( \frac{1}{x}\right)^2+\frac{x(x-1)(x-2)}{3!} \left( \frac{1}{x}\right)^3 +...\)
or
\( \left( 1+\frac{1}{x} \right )^x =1+1 +\frac{1(1-\frac{1}{x})}{2!} +\frac{1(1-\frac{1}{x})(1-\frac{2}{x})}{3!}+...\)
Taking limit as \( x \to \infty \), we get
\( \displaystyle \lim_{x \to \infty} \left( 1+\frac{1}{x} \right )^x =1+1 + \lim_{x \to \infty}\frac{1(1-\frac{1}{x})}{2!} +\lim_{x \to \infty}\frac{1(1-\frac{1}{x})(1-\frac{2}{x})}{3!}+...\)
or
\( \displaystyle \lim_{x \to \infty} \left( 1+\frac{1}{x} \right )^x =1+1 + \frac{1(1-0)}{2!} +\frac{1(1-0)(1-0)}{3!}+...\)
or
\( \displaystyle \lim_{x \to \infty} \left( 1+\frac{1}{x} \right )^x =1+1 + \frac{1}{2!} +\frac{1}{3!}+...\)
or
\( \displaystyle \lim_{x \to \infty} \left( 1+\frac{1}{x} \right )^x =e\)
This completes the Proof.
- Prove that
\(\displaystyle \lim_{x\to 0}\frac{e^x-1 }{x}=1 \)
Solution
\(\displaystyle \lim_{x\to 0}\frac{e^x-1 }{x} \)
or \(\displaystyle \lim_{x\to 0}\frac{\left ( 1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+...\right ) -1 }{x} \)
or \(\displaystyle \lim_{x\to 0}\frac{\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+... }{x} \)
or \(\displaystyle \lim_{x\to 0} \frac{1}{1!}+\frac{x}{2!}+\frac{x^2}{3!}+... \)
or \(\frac{1}{1!}+\frac{0}{2!}+\frac{0^2}{3!}+... \)
or 1
This completes the solution.
Limit of logarithmic function
A logarithm function is an exponent of exponential function. For example,
if \( {a^x}=y\), then \(x={\log_a}y\).
In this definition
Log is the exponent, (or, exponent= Log)
if
\(3^2=9\) then \(2 = \log_3 9\)
In general, a function of the form \(f (x) = \log_e x\) called logarithmic function.
where
- Domain of f (x) = \( (0, \infty )\)
- Range of f (x) =\( (-\infty , \infty ) \)
Properties of logarithmic function
- Product property: \( \log a (x.y) = \log_ax + \log a_y \)
- Quotient property: \( \log_ a (x/y) = \log_ax - \log_ay \)
- Power property: \( \log _ ax^nn = n \log _ax \)
- \( \log_ a a = 1, \log_ a 1 = 0 \)
- \( \log_ a m = \log_ a b \times \log_ b m \)
Graph of exponential and logarithem function
Log is the reflection of exponential function about y=x line, which is shown in a graph given below
Theorems on Limit of logarithmic function
- \(\displaystyle \lim_{x\to 0}\frac{\log_e(1+x)}{x}=1 \)
- \(\displaystyle \lim_{x\to 0}\frac{\log_e(1-x)}{-x}=1 \)
- \(\displaystyle \lim_{x\to 0}\frac{a^x-1}{x}=\log a\)
We know that
\( \frac{d}{dx} a^x= \frac{d}{dx} e^{\log (a^x)} \)
or
\( \frac{d}{dx} a^x= \frac{d}{dx} e^{x \log a} \)
or
\( \frac{d}{dx} a^x= \log a .e^{x \log a} \)
or
\( \frac{d}{dx} a^x= \log a .e^{\log a^x} \)
or
\( \frac{d}{dx} a^x= \log a. a^x \)
Thus, the limit is
\(\displaystyle \lim_{x\to 0}\frac{a^x-1}{x}\)
or \(\displaystyle \lim_{x\to 0}\frac{ \frac{d}{dx}(a^x-1)}{\frac{d}{dx} (x)} \)
or \(\displaystyle \lim_{x\to 0}\frac{ \log a . a^x}{1} \)
or \(\log a .a^0 \)
or \(\log a \)
This completes the proof
Limit (BCB-Revised Edition 2020, Exercise 2, Page 379)
Evaluate the following.
- \( \displaystyle \lim_{x \to 0} \frac{\sin ax}{x} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\sin ax}{x} \)
or \( \displaystyle \lim_{x \to 0} \frac{\sin ax}{ax} .a \)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{\sin ax}{ax} \right ) .a \)
or \( a\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\tan bx}{x} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\tan bx}{x} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan bx}{bx} .b \)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{\tan bx}{x} \right ) .b \)
or \( b\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\sin mx}{\sin nx} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\sin mx}{\sin nx} \)
or \( \displaystyle \lim_{x \to 0} \left ( \frac{ \frac{\sin mx}{mx}}{\frac{\sin nx}{nx}} \right ) \frac{mx}{nx} \)
or \( \left ( \frac{ \displaystyle \lim_{x \to 0} \frac{\sin mx}{mx}}{ \displaystyle \lim_{x \to 0} \frac{\sin nx}{nx}} \right ) \frac{m}{n} \)
or \( \left ( \displaystyle \frac{ 1}{ 1} \right ) \frac{m}{n} \)
or \( \frac{m}{n} \)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\tan ax}{\tan bx} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\tan ax}{\tan bx}\)
or \( \displaystyle \lim_{x \to 0} \left ( \frac{ \frac{\tan ax}{ax}}{\frac{\tan bx}{bx}} \right ) \frac{ax}{bx} \)
or \( \left ( \frac{ \displaystyle \lim_{x \to 0} \frac{\tan ax}{ax}}{ \displaystyle \lim_{x \to 0} \frac{\tan bx}{bx}} \right ) \frac{a}{b} \)
or \( \left ( \displaystyle \frac{ 1}{ 1} \right ) \frac{a}{b} \)
or \( \frac{a}{b} \)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\sin px}{\tan qx} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\sin px}{\tan qx}\)
or \( \displaystyle \lim_{x \to 0} \left ( \frac{ \frac{\sin px}{px}}{\frac{\tan qx}{qx}} \right ) \frac{px}{qx} \)
or \( \left ( \frac{ \displaystyle \lim_{x \to 0} \frac{\sin px}{px}}{ \displaystyle \lim_{x \to 0} \frac{\tan qx}{qx}} \right ) \frac{p}{q} \)
or \( \left ( \displaystyle \frac{ 1}{ 1} \right ) \frac{p}{q} \)
or \( \frac{p}{q} \)
This completes the solution
- \( \displaystyle \lim_{x \to a} \frac{\sin (x-a)}{x^2-a^2} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to a} \frac{\sin (x-a)}{x^2-a^2}\)
or \( \displaystyle \lim_{x \to a} \frac{\sin (x-a)}{x-a} \frac{1}{x+a}\)
or \( \left ( \displaystyle \lim_{(x-a) \to 0} \frac{\sin (x-a)}{(x-a)} \right ) \left ( \displaystyle \lim_{x \to a} \frac{1}{x+a} \right )\)
or \( \left ( 1 \right ) \left ( \frac{1}{a+a} \right ) \)
or \( \frac{1}{2a} \)
This completes the solution
- \( \displaystyle \lim_{x \to p} \frac{x^2-p^2}{\tan (x-p)} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to p} \frac{x^2-p^2}{\tan (x-p)}\)
or \( \displaystyle \lim_{x \to p} (x+p) \frac{(x-p)}{\tan (x-p)}\)
or \( \displaystyle \lim_{x \to p} (x+p) \left ( \displaystyle \lim_{(x-p) \to 0} \frac{(x-p)}{\tan (x-p)} \right ) \)
or \( (p+p) \left ( 1\right )\)
or \(2p \)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\sin ax. \cos bx}{\sin cx} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\sin ax. \cos bx}{\sin cx} \)
or \( \displaystyle \lim_{x \to 0} \left ( \frac{ \frac{\sin ax}{ax} (\cos bx) }{\frac{\sin cx}{cx} } \right ) \frac{(ax)}{(cx)}\)
or \( \frac{ \left ( \displaystyle \lim_{x \to 0} \frac{\sin ax}{ax} \right ) \left ( \displaystyle \lim_{x \to 0} \cos bx \right ) }{ \left ( \displaystyle \lim_{x \to 0} \frac{\sin cx}{cx} \right ) } \frac{a}{c} \)
or \( \frac{ \left ( 1 \right ) \left ( 1 \right ) }{ \left ( 1 \right ) } \frac{a}{c} \)
or \( \frac{a}{c}\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2} \)
or \( \displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2} . \frac{1+\cos x}{1+\cos x}\)
or \( \displaystyle \lim_{x \to 0} \frac{1-\cos^2 x}{x^2} . \frac{1}{1+\cos x}\)
or \( \displaystyle \lim_{x \to 0} \frac{\sin^2 x}{x^2} . \frac{1}{1+\cos x}\)
or \( \displaystyle \lim_{x \to 0} \left (\frac{\sin x}{x}\right )^2 . \frac{1}{1+\cos x}\)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{\sin x}{x}\right )^2 . \left ( \displaystyle \lim_{x \to 0} \frac{1}{1+\cos x} \right )\)
or \( \left ( 1 \right )^2 . \left ( \frac{1}{1+1} \right )\)
or \( \frac{1}{2}\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos 6x}{x^2} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{1-\cos 6x}{x^2} \)
or \( \displaystyle \lim_{x \to 0} \frac{1-\cos 6x}{x^2} . \frac{1+\cos 6x}{1+\cos 6x}\)
or \( \displaystyle \lim_{x \to 0} \frac{1-\cos^2 6x}{x^2} . \frac{1}{1+\cos 6x}\)
or \( \displaystyle \lim_{x \to 0} \frac{\sin^2 6x}{x^2} . \frac{1}{1+\cos 6x}\)
or \( \displaystyle \lim_{x \to 0} \left (\frac{\sin 6x}{6x}\right )^2 .6^2. \frac{1}{1+\cos 6x}\)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{\sin 6x}{6x}\right )^2 .36. \left ( \displaystyle \lim_{x \to 0} \frac{1}{1+\cos 6x} \right )\)
or \( \left ( 1 \right )^2 .36. \left ( \frac{1}{1+1} \right )\)
or \( 18\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos 9x}{x^2} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{1-\cos 9x}{x^2} \)
or \( \displaystyle \lim_{x \to 0} \frac{1-\cos 9x}{x^2} . \frac{1+\cos 9x}{1+\cos 9x}\)
or \( \displaystyle \lim_{x \to 0} \frac{1-\cos^2 9x}{x^2} . \frac{1}{1+\cos 9x}\)
or \( \displaystyle \lim_{x \to 0} \frac{\sin^2 9x}{x^2} . \frac{1}{1+\cos 9x}\)
or \( \displaystyle \lim_{x \to 0} \left (\frac{\sin 9x}{9x}\right )^2 .9^2. \frac{1}{1+\cos 9x}\)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{\sin 9x}{9x}\right )^2 .81. \left ( \displaystyle \lim_{x \to 0} \frac{1}{1+\cos 9x} \right )\)
or \( \left ( 1 \right )^2 .81. \left ( \frac{1}{1+1} \right )\)
or \( \frac{81}{2}\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\cos ax-\cos bx}{x^2} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\cos ax-\cos bx}{x^2} \)
or \( \displaystyle \lim_{x \to 0} \frac{\cos ax-\cos bx}{x^2} . \frac{\cos ax+\cos bx}{\cos ax+\cos bx} \)
or \( \displaystyle \lim_{x \to 0} \frac{\cos^2 ax-\cos^2 bx}{x^2} . \frac{1}{\cos ax+\cos bx} \)
or \( \displaystyle \lim_{x \to 0} \frac{(1-\sin^2 ax)-(1-\sin^2 bx)}{x^2} . \frac{1}{\cos ax+\cos bx} \)
or \( \displaystyle \lim_{x \to 0} \frac{\sin^2 bx-\sin^2 ax}{x^2} . \frac{1}{\cos ax+\cos bx} \)
or \( \displaystyle \lim_{x \to 0} \left ( \frac{\sin^2 bx}{x^2} -\frac{\sin^2 ax}{x^2} \right ). \frac{1}{\cos ax+\cos bx} \)
or \( \displaystyle \lim_{x \to 0} \left ( \left ( \frac{\sin bx}{bx}\right )^2 .b^2- \left ( \frac{\sin ax}{ax} \right )^2.a^2 \right ). \frac{1}{\cos ax+\cos bx} \)
or \( \left ( \left ( \displaystyle \lim_{x \to 0} \frac{\sin bx}{bx}\right )^2 .b^2- \left ( \displaystyle \lim_{x \to 0} \frac{\sin ax}{ax} \right )^2.a^2 \right ). \left ( \displaystyle \lim_{x \to 0} \frac{1}{\cos ax+\cos bx} \right ) \)
or \( \left ( 1)^2 .b^2- \left ( 1 \right )^2.a^2 \right ). \left ( \frac{1}{1+1} \right ) \)
or \( \frac{b^2- a^2}{2} \)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\sin ax-\sin bx}{x} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\sin ax-\sin bx}{x} \)
or \( \displaystyle \lim_{x \to 0} \left ( \frac{\sin ax}{x}-\frac{\sin bx}{x} \right ) \)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{\sin ax}{ax}. a- \displaystyle \lim_{x \to 0} \frac{\sin bx}{bx}.b \right ) \)
or \( \left ( 1.a- 1.b \right ) \)
or \( a-b \)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos px}{1-\cos qx} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{1-\cos px}{1-\cos qx} \)
or \( \displaystyle \lim_{x \to 0} (1-\cos px)\frac{1}{1-\cos qx} \)
or \( \displaystyle \lim_{x \to 0}\left ( (1-\cos px). \frac{1+\cos px}{1+\cos px} \right ) \left ( \frac{1}{1-\cos qx} .\frac{1+\cos qx}{1+\cos qx} \right ) \)
or \( \displaystyle \lim_{x \to 0}\left ( \frac{1-\cos^2 px}{1+\cos px} \right ) \left ( \frac{1+\cos qx}{1-\cos^2 qx} \right ) \)
or \( \displaystyle \lim_{x \to 0}\left ( \frac{\sin^2 px}{1+\cos px} \right ) \left ( \frac{1+\cos qx}{\sin^2 qx} \right ) \)
or \( \displaystyle \lim_{x \to 0}\left ( \frac{\sin^2 px}{\sin^2 qx} \right ) \left ( \frac{1+\cos qx}{1+\cos px} \right ) \)
or \( \displaystyle \lim_{x \to 0}\left ( \frac{\frac{\sin px}{px} }{\frac{\sin qx}{q}} . \frac{px}{qx}\right )^2 \left ( \frac{1+\cos qx}{1+\cos px} \right ) \)
or \( \left ( \frac{\displaystyle \lim_{x \to 0} \frac{\sin px}{px}}{\displaystyle \lim_{x \to 0} \frac{\sin qx}{q}} . \frac{p}{q}\right )^2 \left (\displaystyle \lim_{x \to 0} \frac{1+\cos qx}{1+\cos px} \right ) \)
or \( \left (\frac{p}{q}\right )^2 \left (\frac{1+1}{1+1} \right ) \)
or \( \frac{p^2}{q^2}\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\tan x-\sin x}{x^3} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\tan x-\sin x}{x^3} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan x (1-\cos x)}{x^3} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan x}{x} \frac{(1-\cos x)}{x^2} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan x}{x} \frac{(1-\cos^2 x)}{x^2} \frac{1}{1+\cos x} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan x}{x} \frac{(\sin^2 x}{x^2} \frac{1}{1+\cos x} \)
or \(\left ( \displaystyle \lim_{x \to 0} \frac{\tan x}{x} \right ) \left ( \displaystyle \lim_{x \to 0} \frac{\sin x}{x} \right )^2 \left ( \displaystyle \lim_{x \to 0} \frac{1}{1+\cos x} \right ) \)
or \(1.1.\frac{1}{1+1} \)
or \(\frac{1}{2} \)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{\tan 2x-\sin 2x}{x^3} \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 0} \frac{\tan 2x-\sin 2x}{x^3} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan 2x (1-\cos 2x)}{x^3} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan 2x}{x} \frac{(1-\cos 2x)}{x^2} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan 2x}{x} \frac{(1-\cos^2 2x)}{x^2} \frac{1}{1+\cos 2x} \)
or \( \displaystyle \lim_{x \to 0} \frac{\tan 2x}{2x}.(2) \frac{\sin^2 2x}{(2x)^2} .(2^2) \frac{1}{1+\cos 2x} \)
or \(\left ( \displaystyle \lim_{x \to 0} \frac{\tan 2x}{2x} .(2)\right ) \left ( \displaystyle \lim_{x \to 0} \frac{\sin 2x}{2x} .(2) \right )^2 \left ( \displaystyle \lim_{x \to 0} \frac{1}{1+\cos 2x} \right ) \)
or \(1(2).1.(4)\frac{1}{1+1} \)
or \(4 \)
This completes the solution
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} (\sec x -\tan x) \)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to \frac{\pi}{2}} (\sec x -\tan x) \)
or \( \displaystyle \lim_{x \to \frac{\pi}{2}} \sec x (1 -\sin x) \)
or \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\sec x (1 -\sin^2 x)}{1+\sin x} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\sec x \cos^2 x}{1+\sin x} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{1+\sin x} \)
or \( \frac{\cos \frac{\pi}{2}}{1+\sin \frac{\pi}{2}} \)
or \( \frac{0}{1+1} \)
or \( 0 \)
This completes the solution
- \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{\sec ^2 x-2}{\tan x-1}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{\sec ^2 x-2}{\tan x-1} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{1+\tan^2 x-2}{\tan x-1} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{\tan^2 x-1}{\tan x-1} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{4}} \tan x+1\)
or \( \tan \frac{\pi}{4}+1\)
or \( 1+1=2\)
This completes the solution
- \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{2- \csc ^2 x}{1 -\cot x}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{2- \csc ^2 x}{1 -\cot x} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{2- (1+\cot ^2 x)}{1 -\cot x} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{2- 1-\cot ^2 x}{1 -\cot x} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{1-\cot^2 x}{1 -\cot x} \)
or \( \displaystyle \lim_{x \to \frac{\pi}{4}} 1+\cot x\)
or \( 1+\cot \frac{\pi}{4}\)
or \( 1+1=2\)
This completes the solution
- \( \displaystyle \lim_{x \to y} \frac{\tan x -\tan y}{x-y}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to y} \frac{\tan x -\tan y}{x-y} \)
or \( \displaystyle \lim_{x \to y} \frac{\tan (x-y). (1+\tan x \tan y)} {x-y} \)
or \( \displaystyle \lim_{x \to y} \frac{\tan (x-y)}{x-y}. (1+\tan x \tan y) \)
or \( \displaystyle \lim_{(x-y) \to 0} \frac{\tan (x-y)}{x-y}. \displaystyle \lim_{x \to y} (1+\tan x \tan y) \)
or \( 1. (1+\tan x \tan x) \)
or \( 1. (1+\tan^2 x ) \)
or \( \sec^2 x \)
This completes the solution
- \( \displaystyle \lim_{x \to y} \frac{\sin x -\sin y}{x-y}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to y} \frac{\sin x -\sin y}{x-y} \)
or \( \displaystyle \lim_{x \to y} \frac{2 \cos (\frac{x+y}{2}) .\sin (\frac{x-y}{2})}{x-y}\)
or \( \displaystyle \lim_{x \to y} 2 \cos (\frac{x+y}{2}) \frac{\sin (\frac{x-y}{2})}{x-y}\)
or \( \displaystyle \lim_{x \to y} 2 \cos (\frac{x+y}{2}) \frac{\sin (\frac{x-y}{2})}{(\frac{x-y}{2})} . \frac{1}{2}\)
or \( \left ( \displaystyle \lim_{x \to y} \cos \frac{x+y}{2} \right ) \left ( \displaystyle \lim_{x \to y} \frac{\sin \frac{x-y}{2}}{\frac{x-y}{2}} \right ) \)
or \( \cos \frac{y+y}{2} ( 1 ) \)
or \( \cos y\)
This completes the solution
- \( \displaystyle \lim_{x \to y} \frac{\cos x -\cos y}{x-y}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to y} \frac{\cos x -\cos y}{x-y} \)
or \( \displaystyle \lim_{x \to y} \frac{-2 \sin (\frac{x+y}{2}) .\sin (\frac{x-y}{2})}{x-y}\)
or \( \displaystyle \lim_{x \to y} -2 \sin (\frac{x+y}{2}) \frac{\sin (\frac{x-y}{2})}{x-y}\)
or \( \displaystyle \lim_{x \to y} -2 \sin (\frac{x+y}{2}) \frac{\sin (\frac{x-y}{2})}{(\frac{x-y}{2})} . \frac{1}{2}\)
or \( \left ( \displaystyle \lim_{x \to y} -\sin \frac{x+y}{2} \right ) \left ( \displaystyle \lim_{x \to y} \frac{\sin \frac{x-y}{2}}{\frac{x-y}{2}} \right ) \)
or \( -\sin \frac{y+y}{2} ( 1 ) \)
or \( -\sin y\)
This completes the solution
- \( \displaystyle \lim_{x \to \theta} \frac{x \cot \theta -\theta \cot x}{x -\theta}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to \theta} \frac{x \cot \theta -\theta \cot x}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \frac{x \cot \theta - \theta \cot \theta + \theta \cot \theta - \theta \cot x}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \frac{(x- \theta) \cot \theta + \theta (\cot \theta - \cot x)}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \frac{(x- \theta) \cot \theta} {x -\theta} + \displaystyle \lim_{x \to \theta} \frac{\theta (\cot \theta - \cot x)}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \cot \theta - \displaystyle \lim_{x \to \theta} \frac{\theta (\cot x -\cot \theta )}{x -\theta} \)
or \( \cot \theta - \theta \displaystyle \lim_{x \to \theta} \frac{ - \frac{\sin(x-\theta)}{\sin x \sin \theta} }{x -\theta} \)
or \( \cot \theta + \theta \displaystyle \lim_{x \to \theta} \frac{\sin(x-\theta)}{x -\theta} \frac{1}{\sin x \sin \theta} \)
or \( \cot \theta + \theta \left ( \displaystyle \lim_{x-\theta \to 0} \frac{\sin(x-\theta)}{x -\theta} \right ) \left ( \displaystyle \lim_{x \to \theta} \frac{1}{\sin x \sin \theta} \right ) \)
or \( \cot \theta + \theta .1. \frac{1}{\sin^2 \theta} \)
or \( \cot \theta + \theta \csc^2 \theta \)
This completes the solution
- \( \displaystyle \lim_{x \to \theta} \frac{x \cos \theta -\theta \cos x}{x -\theta}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to \theta} \frac{x \cos \theta -\theta \cos x}{x -\theta}\)
or \( \displaystyle \lim_{x \to \theta} \frac{x \cos \theta -\theta \cos \theta+\theta \cos \theta -\theta \cos x}{x -\theta}\)
or \( \displaystyle \lim_{x \to \theta} \frac{(x- \theta) \cos \theta+ \theta ( \cos \theta - \cos x)}{x -\theta}\)
or \( \displaystyle \lim_{x \to \theta} \frac{(x- \theta) \cos \theta }{x -\theta} + \frac{ \theta (\cos \theta - \cos x)}{x -\theta}\)
or \( \displaystyle \lim_{x \to \theta} \cos \theta + \theta \displaystyle \lim_{x \to \theta} \frac{ ( 2 \sin (\frac{x+\theta}{2}). \sin (\frac{x-\theta}{2}))}{x -\theta}\)
or \( \cos \theta + \theta \left ( \displaystyle \lim_{x \to \theta} \sin (\frac{x+\theta}{2}) \right ) \left (\displaystyle \lim_{x-\theta \to 0} \frac{ \sin (\frac{x-\theta}{2})}{ (\frac{x-\theta}{2})} \right ) \)
or \( \cos \theta + \theta \left ( \sin \theta \right ) \left (1 \right ) \)
or \( \cos \theta + \theta \sin \theta \)
This completes the solution
- \( \displaystyle \lim_{x \to 1} \frac{1+ \cos \pi x}{\tan ^2 \pi x}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to 1} \frac{1+ \cos \pi x}{\tan ^2 \pi x}\)
or \( \displaystyle \lim_{x \to 1} \frac{1- \cos (\pi-\pi x)}{\tan ^2 (\pi-\pi x)} \)
or \( \displaystyle \lim_{x \to 1} \frac{1- \cos^2 (\pi-\pi x)}{\tan ^2 (\pi-\pi x)} . \frac{1}{1+ \cos (\pi-\pi x)} \)
or \( \displaystyle \lim_{x \to 1} \frac{\sin^2 (\pi-\pi x)}{\tan ^2 (\pi-\pi x)} . \frac{1}{1+ \cos (\pi-\pi x)} \)
or \( \left ( \displaystyle \lim_{x-1 \to 0} \cos (\pi-\pi x) \right )^2 . \left ( \displaystyle \lim_{x \to 1} \frac{1}{1+ \cos (\pi-\pi x)} \right ) \)
or \( \left ( 1 \right )^2 . \left ( \frac{1}{1+ 1} \right ) \)
or \( \frac{1}{2} \)
This completes the solution
- \( \displaystyle \lim_{x \to \theta} \frac{x \tan \theta -\theta \tan x}{x -\theta}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to \theta} \frac{x \tan \theta -\theta \tan x}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \frac{x \tan \theta - \theta \tan \theta + \theta \tan \theta - \theta \tan x}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \frac{(x- \theta) \tan \theta + \theta (\tan \theta - \tan x)}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \frac{(x- \theta) \tan \theta} {x -\theta} + \displaystyle \lim_{x \to \theta} \frac{\theta (\tan \theta - \tan x)}{x -\theta} \)
or \( \displaystyle \lim_{x \to \theta} \tan \theta - \displaystyle \lim_{x \to \theta} \frac{\theta (\tan x -\tan \theta )}{x -\theta} \)
or \( \tan \theta - \theta \displaystyle \lim_{x \to \theta} \frac{ (\tan x -\tan \theta )}{x -\theta} \)
or \( \tan \theta - \theta \displaystyle \lim_{x \to \theta} \frac{ \tan (x- \theta )(1+\tan x \tan \theta)}{x -\theta} \)
or \( \tan \theta - \theta \displaystyle \lim_{x \to \theta} \frac{ \tan (x- \theta )}{x -\theta} \displaystyle \lim_{x \to \theta} (1+\tan x \tan \theta)\)
or \( \tan \theta - \theta .1.(1+\tan^2 \theta)\)
or \( \tan \theta - \theta \sec^2 \theta\)
This completes the solution
- \( \displaystyle \lim_{\theta \to \frac{\pi}{4}} \frac{\cos \theta -\sin \theta}{\theta -\frac{\pi}{4}}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{\theta \to \frac{\pi}{4}} \frac{\cos \theta -\sin \theta}{\theta -\frac{\pi}{4}} \)
or \( \displaystyle \lim_{\theta \to \frac{\pi}{4}} \frac{ \sqrt{2} (\cos \theta \frac{1}{\sqrt{2}}-\sin \theta \frac{1}{\sqrt{2}}) } {\theta -\frac{\pi}{4}} \)
or \( \sqrt{2} \displaystyle \lim_{\theta \to \frac{\pi}{4}} \frac{\cos \theta \sin \frac{\pi}{4} -\sin \theta \cos \frac{\pi}{4}}{\theta -\frac{\pi}{4}}\)
or \( - \sqrt{2} \displaystyle \lim_{\theta \to \frac{\pi}{4}} \frac{\sin \theta \cos \frac{\pi}{4} -\cos \theta \sin \frac{\pi}{4}}{\theta -\frac{\pi}{4}}\)
or \( - \sqrt{2} \displaystyle \lim_{\theta \to \frac{\pi}{4}} \frac{\sin (\theta -\frac{\pi}{4}) }{\theta -\frac{\pi}{4}}\)
or \( - \sqrt{2} .1\)
or \( - \sqrt{2}\)
This completes the solution
- \( \displaystyle \lim_{x \to c} \frac{\sqrt{x}-\sqrt{c}}{\sin x-\sin c}\)
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to c} \frac{\sqrt{x}-\sqrt{c}}{\sin x-\sin c} \)
or \( \displaystyle \lim_{x \to c} \frac{x-c}{(\sin x-\sin c)(\sqrt{x}+\sqrt{c})} \)
or \( \displaystyle \lim_{x \to c} \frac{x-c}{\sin x-\sin c} \frac{1}{\sqrt{x}+\sqrt{c}} \)
or \( \displaystyle \lim_{x \to c} \frac{x-c}{2 \cos (\frac{x+c}{2}) \sin (\frac{x-c}{2}) } \frac{1}{\sqrt{x}+\sqrt{c}} \)
or \( \displaystyle \lim_{x \to c} \frac{\frac{x-c}{2}}{ \sin (\frac{x-c}{2}) } \frac{1}{\cos (\frac{x+c}{2}) (\sqrt{x}+\sqrt{c})} \)
or \( \displaystyle \lim_{x \to c} \frac{\frac{x-c}{2}}{ \sin (\frac{x-c}{2}) } \displaystyle \lim_{x \to c} \frac{1}{\cos (\frac{x+c}{2}) (\sqrt{x}+\sqrt{c})} \)
or \( 1. \frac{1}{\cos c (\sqrt{c}+\sqrt{c})} \)
or \( \frac{\sec c}{2\sqrt{c}} \)
This completes the solution
- Find the limits of
- \( \displaystyle \lim_{x \to 0} \frac{e^{6x}-1}{x}\)
Solution 👉 Click Here
The limit takes the indeterminate form \(\frac{0}{0}\), we proceed further calculation
Given that
\( \displaystyle \lim_{x \to 0} \frac{e^{6x}-1}{x} \)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{e^{6x}-1}{6x} \right ).6\) \( \because \displaystyle \lim_{x \to 0} \frac{e^{x}-1}{x}=1\)
or \( 1.6\)
or \( 6\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{e^{2x}-1}{x. 2^{x+1}}\)
Solution 👉 Click Here
The limit takes the indeterminate form \(\frac{0}{0}\), we proceed further calculation
Given that
\( \displaystyle \lim_{x \to 0} \frac{e^{2x}-1}{x. 2^{x+1}} \)
or \( \displaystyle \lim_{x \to 0} \frac{e^{2x}-1}{x} . \frac{1}{2^{x+1}}\)
or \( \displaystyle \lim_{x \to 0} \frac{e^{2x}-1}{2x} . \frac{1}{2^{x}}\)
or \( \left ( \displaystyle \lim_{x \to 0} \frac{e^{2x}-1}{2x} \right ) . \left (\displaystyle \lim_{x \to 0} \frac{1}{2^{x}} \right ) \)
or \( \left ( 1 \right ) . \left (\frac{1}{1} \right ) \) \( \because \displaystyle \lim_{x \to 0} \frac{e^{x}-1}{x}=1\)
or \( 1\)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{e^{ax}-e^{bx}}{x}\)
Solution 👉 Click Here
The limit takes the indeterminate form \(\frac{0}{0}\), we proceed further calculation
Given that
\( \displaystyle \lim_{x \to 0} \frac{e^{ax}-e^{bx}}{x} \)
or\( \displaystyle \lim_{x \to 0} \frac{e^{ax}-1-e^{bx}+1}{x} \)
or\( \displaystyle \lim_{x \to 0} \frac{(e^{ax}-1)-(e^{bx}-1)}{x} \)
or \( \displaystyle \lim_{x \to 0} \frac{e^{ax}-1}{x}- \displaystyle \lim_{x \to 0} \frac{e^{bx}-1}{x} \)
or \( \displaystyle \lim_{x \to 0} \frac{e^{ax}}{ax} .a - \displaystyle \lim_{x \to 0} \frac{e^{bx}}{bx} .b \)
or \( 1 .a - 1 .b \) \( \because \displaystyle \lim_{x \to 0} \frac{e^{x}-1}{x}=1\)
or \( a - b \)
This completes the solution
- \( \displaystyle \lim_{x \to 0} \frac{a^x+b^x-2}{x}\)
Solution 👉 Click Here
The limit takes the indeterminate form \(\frac{0}{0}\), we proceed further calculation
Given that
\( \displaystyle \lim_{x \to 0} \frac{a^x+b^x-2}{x} \)
or\( \displaystyle \lim_{x \to 0} \frac{a^x-1+b^x-1}{x} \)
or\( \displaystyle \lim_{x \to 0} \frac{a^x-1}{x}+ \lim_{x \to 0} \frac{b^x-1}{x} \)
or\( \log a+ \log b \) \( \because \displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=\log a\)
or\( \log (ab)\)
This completes the solution
-
Evaluate the limits of
- \( \displaystyle \lim_{x \to 2} \frac{x-2}{\log (x-1)}\)
Solution 👉 Click Here
The limit takes the indeterminate form \(\frac{0}{0}\), we proceed further calculation
Given that
\( \displaystyle \lim_{x \to 2} \frac{x-2}{\log (x-1)} \)
or\( \displaystyle \lim_{x \to 2} \frac{x-2}{\log [1+(x-2)]} \)
or\( \displaystyle \lim_{x \to 2} \frac{1}{\frac{\log [1+(x-2)]}{(x-2)}} \)
or\( \frac{1}{ \displaystyle \lim_{x-2 \to 0} \frac{\log [1+(x-2)]}{(x-2)}} \)
or\( \frac{1}{ 1} \) \( \because \displaystyle \lim_{x \to 0} \frac{\log (1+x)}{x}=1\)
or\( 1 \)
This completes the solution
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\log \left ( x- \frac{\pi}{2} +1\right )}\)
Solution 👉 Click Here
The limit takes the indeterminate form \(\frac{0}{0}\), we proceed further calculation
Given that
\( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\log \left ( x- \frac{\pi}{2} +1\right )} \)
or\( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\sin (\frac{\pi}{2}-x)}{\log \left [ 1+(x- \frac{\pi}{2}) \right ]} \)
or\( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{- \sin (x-\frac{\pi}{2})}{\log \left [ 1+(x- \frac{\pi}{2}) \right ]} \)
or\( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{- \sin (x-\frac{\pi}{2})}{(x-\frac{\pi}{2})} . \frac{x-\frac{\pi}{2}}{\log \left [ 1+(x- \frac{\pi}{2}) \right ]} \)
or\( - \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ \sin (x-\frac{\pi}{2})}{(x-\frac{\pi}{2})} . \frac{1}{ \displaystyle \lim_{x- \frac{\pi}{2} \to 0} \frac {\log \left [ 1+(x- \frac{\pi}{2}) \right ] }{ (x-\frac{\pi}{2})} } \)
or\( - 1 . 1 \)
or\( - 1 \)
This completes the solution
Additional Question (Limit)[Page 392]
- Prove that \( \displaystyle \lim_{x \to \frac{2}{3}} \frac{2}{2-3x}\) does NOT exist.
Solution 👉 Click Here
Given that
\( \displaystyle \lim_{x \to \frac{2}{3}} \frac{2}{2-3x}\)
At \(x= \frac{2}{3}\), we compute the following
The left hand limit is
\( LHL=\displaystyle \lim_{x \to \frac{2}{3}^-} f(x)= \lim_{h \to 0^-} \frac{2}{2-3(\frac{2}{3}-h)}=\lim_{h \to 0^-}\frac{2}{2-2+h}=\lim_{h \to 0^-}\frac{2}{h}=\) ∞
The right hand limit is
\(RHL= \displaystyle \lim_{x \to \frac{2}{3}^+} f(x)= \lim_{h \to 0^+} \frac{2}{2-3(\frac{2}{3}+h)}=\lim_{h \to 0^+}\frac{2}{2-2-h}=\lim_{h \to 0^+}\frac{2}{-h}=\) -∞
Since,
LHL≠RHL
The limit does NOT exist at \(x= \frac{2}{3}\)
This completes the solution
- Do the following function define for the value x=1?
- \( f(x)=\frac{x-1}{x+2}\)
Solution 👉 Click Here
Yes, the function \( f(x)=\frac{x-1}{x+2}\) is defined for the value x=1, because when we put x=1 to the function f(x), then
\( f(x)=\frac{x-1}{x+2}\)
=
\( f(x)=\frac{1-1}{1+2}\)
=
\( f(x)=\frac{0}{3}\)
=
\( f(x)=0\)
- \( f(x)=\frac{x^3+1}{x-1}\)
Solution 👉 Click Here
No, the function \( f(x)=\frac{x^3+1}{x-1}\) is NOT defined for the value x=1, because when we put x=1 to the function f(x), then
\( f(x)=\frac{x^3+1}{x-1}\)
=
\( f(x)=\frac{1^3+1}{1-1}\)
=
\( f(x)=\frac{2}{0}\)
=
\( f(x)=\infty\)
- What do you mean by the left hand limit and right hand limit of a function? What is the condition for the limit of a function to exist at a point?
Prove that \(\displaystyle \lim_{x \to 0}|x|=0\) but \(\displaystyle \lim_{x \to 0} \frac{|x|}{x} \) does not exist.
Solution 👉 Click Here
Left-hand limit
The left-hand limit of a function f(x) at a particular point x=a is used to determine the behavior of the function f(x) as it approaches a from the left.
Left-Hand Limit (LHL): is defined as
\( LHL=\displaystyle \lim_{x \to a^-} f(x)\)
This limit represents the behavior of the function f(x) as x gets closer to a while staying to the left of a.
Right-hand limit
The right-hand limit of a function f(x) at a particular point x=a is used to determine the behavior of the function f(x) as it approaches a from the right.
Right-Hand Limit (RHL): is defined as
\( RHL=\displaystyle \lim_{x \to a^+} f(x)\)
This limit represents the behavior of the function f(x) as x gets closer to a while staying to the right of a.
Condition for the limit of a function to exist at a point
let f(x) be a function, then condition for the limit of a function f(x) to exist at a point a is that
\( LHL=RHL\)
or \( \displaystyle \lim_{x \to a^-} f(x)=\lim_{x \to a^+} f(x)\)
This limit represents the behavior of the function f(x) as x gets closer to the point a, from both sides:left and right.
\(\displaystyle \lim_{x \to 0}|x|=0\)
The left hand limit is
\( LHL=\displaystyle \lim_{x \to 0^-} |x|= \lim_{x \to 0^-} -x = \) 0
The right hand limit is
\(RHL= \displaystyle \lim_{x \to 0^+} |x|= \lim_{x \to 0^+} x = \) 0
Since,
LHL=RHL
The limit exist at x=0, and the limit value is 0
\(\displaystyle \lim_{x \to 0} \frac{|x|}{x} \) does NOT exist
The left hand limit is
\( LHL=\displaystyle \lim_{x \to 0^-} \frac{|x|}{x}= \lim_{x \to 0^-} \frac{-x}{x} = \) -1
The right hand limit is
\(RHL= \displaystyle \lim_{x \to 0^+} \frac{|x|}{x}= \lim_{x \to 0^+} \frac{x}{x} = \) 1
Since,
LHL≠RHL
The limit does NOT exist at x=0
- Distinguish between limit and value of a function.
It is given that \(f(x)=\frac{ax+b}{x+1},\displaystyle \lim_{x \to 0} f(x)=2\) and \( \displaystyle \lim_{x \to \infty} f(x)=1\). Prove that \(f(-2)=0\)
Solution 👉 Click Here
Distinguish between limit and value
| Limit of a Function | Value of a Function |
Behaviour at a | represents the behavior of the function as it gets closer and closer to a particular point (typically denoted as "a") | The value of a function represents the actual output or result of the function when a specific input is provided. |
Symbolically | the limit of a function f(x) as x approaches a is denoted as \( \displaystyle \lim_{x \to a} f(x) \) | the value of a function f(x) at a particular point a is denoted as f(a) |
Definition at a | The limit may not necessarily be equal to the function's actual value at that point. It describes what happens to the function's values as x gets arbitrarily close to a. | It provides information about the function's behavior at a specific point. |
| Limits are used to analyze the behavior of functions near singular/critical points, to determine continuity, derivatives and integrals. | Functional value are used to compute the value at a |
Problem Solving
It is given that \(f(x)=\frac{ax+b}{x+1}\)
Also given that
\(\displaystyle \lim_{x \to 0} f(x)=2\)
or\(\displaystyle \lim_{x \to 0} \frac{ax+b}{x+1}=2\)
or\( \frac{a.0+b}{0+1}=2\)
or\( b=2\)
Also given that
\( \displaystyle \lim_{x \to \infty} f(x)=1\)
or\( \displaystyle \lim_{x \to \infty} \frac{ax+b}{x+1}=1\)
or\( \displaystyle \lim_{x \to \infty} \frac{a+\frac{b}{x}}{1+\frac{1}{x}}=1\)
or\( \frac{a+\frac{b}{\infty}}{1+\frac{1}{\infty}}=1\)
or\( \frac{a+0}{1+0}=1\)
or\( a=1\)
Now
\(f(x)=\frac{ax+b}{x+1}\)
or\(f(-2)=\frac{a.(-2)+b}{(-2)+1}\)
or\(f(-2)=\frac{1.(-2)+2}{(-2)+1}\)
or\(f(-2)=0\)
This completes the proof.
- Define limit of a function at a point. It is given that \(f(x)=\frac{x+6}{cx-d},\displaystyle \lim_{x \to 0} f(x)=-6 \) and \( \displaystyle \lim_{x \to \infty} f(x)=\frac{1}{3}\).
Prove that \(f(13)=\frac{1}{2}\)
Solution 👉 Click Here
Limit of a function
Let 𝑓(𝑥) be a function defined at all values in an open interval containing a, with the possible exception of "a" itself, and let L be a real number.
Then we say that \( \displaystyle \lim_{x \to a} f(x) =L\) if for a given number \(\epsilon > 0\), there exists a number \(\delta > 0\)such that
|f(x)-L|<\(\epsilon\) whenever |x-a|<\(\delta\)
Empirical Definition of Limit
Let 𝑓(𝑥) be a function defined at all values in an open interval containing a, with the possible exception of "a" itself, and let L be a real number.
Then we say that \( \displaystyle \lim_{x \to a} f(x) =L\) if all of the following three conditions hold
- \( \displaystyle \lim_{x \to a^{-}} f(x) \) exists=LHS
- \( \displaystyle \lim_{x \to a^{+}} f(x) \) exists=RHS
- LHS=RHS
Problem Solving
It is given that \(f(x)=\frac{x+6}{cx-d}\)
Also given that
\(\displaystyle \lim_{x \to 0} f(x)=-6\)
or\(\displaystyle \lim_{x \to 0} \frac{x+6}{cx-d}=-6\)
or\( \frac{0+6}{c.0-d}=-6\)
or\( d=1\)
Also given that
\( \displaystyle \lim_{x \to \infty} f(x)=\frac{1}{3}\)
or\( \displaystyle \lim_{x \to \infty} \frac{x+6}{cx-d}=\frac{1}{3}\)
or\( \displaystyle \lim_{x \to \infty} \frac{1+\frac{6}{x}}{c-\frac{d}{x}}=\frac{1}{3}\)
or\( \frac{1+0}{c-0}=\frac{1}{3}\)
or\( \frac{1}{c}=\frac{1}{3}\)
or\( c=3\)
Now
\(f(x)=\frac{x+6}{cx-d}\)
or\(f(13)=\frac{13+6}{c.13-d}\)
or\(f(13)=\frac{13+6}{3.13-1}\)
or\(f(13)=\frac{1}{2}\)
This completes the proof.
- What do you mean by an indeterminate form? State their different forms. Evaluate the following limit \(\displaystyle \lim_{x \to \infty} \sqrt{x} (\sqrt{x}-\sqrt{x-a})\)
Solution 👉 Click Here
Indeterminate form
The term "indeterminate" refers to a situation where the value of an expression cannot be uniquely determined based solely on its appearance.
The different form of such indeterminates are as follows.
- \(\frac{0}{0}\)
The expression "\(\frac{0}{0}\)" is called indeterminate because it doesn't provide enough information to uniquely determine its value
For example
\(\frac{1}{1}=1\) |
\(\frac{1}{0}=\infty\) |
\(\frac{0}{1}=0\) |
\(\frac{2}{2}=1\) |
\(\frac{2}{0}=\infty\) |
\(\frac{0}{2}=0\) |
\(\frac{3}{3}=1\) |
\(\frac{3}{0}=\infty\) |
\(\frac{0}{3}=0\) |
… |
… |
… |
\(\frac{a}{a}=1\) |
\(\frac{a}{0}=\infty\) |
\(\frac{0}{a}=0\) |
\(\frac{0}{0}=1\) |
\(\frac{0}{0}=\infty\) |
\(\frac{0}{0}=0\) |
Here, \(\frac{0}{0}\) creates a situation where there is uncertainty about how the fraction \(\frac{0}{0}\) as a whole behaves. In other words, knowing that both the numerator and denominator are approaching zero doesn't immediately mean \(\frac{0}{0}\) will approach a specific finite value, approach infinity, or approach zero. So, it is indeterminate
-
\(\frac{\infty}{\infty}\)
Usually \(\frac{\infty}{number}=\infty\) and \(\frac{number}{\infty}=0\). So the top pulls the limit up to infinity and the bottom tries to pull it down to 0. So who wins?
-
\(0.\infty\)
Usually 0 · (number) = 0 and (number) · ∞ = ∞. So one piece tries to pull the limit down to zero, and the other tries to pull it up to ∞. Does one side win?
-
\(\infty-\infty\)
In general ∞ − (number) = ∞, but (number) − ∞ = −∞. So who wins?
-
\(\infty^{0}\)
In general ∞ raised to any positive power should be equal to ∞, ∞ raised to a negative power is 0, and anything raised to the zero should be equal to 1. So who wins?
-
\(1^{\infty}\)
Usually 1 raised to any power is just equal to 1. But fractions raised to the ∞ goes to zero, and numbers larger than 1 raised to the ∞ should go off to ∞. So where does \(1^{\infty}\) go?
-
\(0^{0}\)
In general zero raised to any positive power is just zero, but but anything raised to the zero should be equal to 1. So which is it?
Problem Solving
\(\displaystyle \lim_{x \to \infty} \sqrt{x} (\sqrt{x}-\sqrt{x-a})\) | = \(\displaystyle \lim_{x \to \infty} \sqrt{x} (\sqrt{x}-\sqrt{x-a}) \frac{(\sqrt{x}+\sqrt{x-a})}{(\sqrt{x}+\sqrt{x-a})}\)
|
| =\(\displaystyle \lim_{x \to \infty} \sqrt{x} (x-x+a) \frac{1}{(\sqrt{x}+\sqrt{x-a})}\)
=\(\displaystyle \lim_{x \to \infty} \frac{a\sqrt{x}}{(\sqrt{x}+\sqrt{x-a})}\)
=\(\displaystyle \lim_{x \to \infty} \frac{a.1}{(1+\sqrt{1-\frac{a}{x}})}\)
=\( \frac{a}{(1+\sqrt{1-0})}\)
=\( \frac{a}{(1+1)}\)
=\( \frac{a}{2}\)
|
- Let \(f:R \to R \) be defined by \(f(x)=\begin{cases}
x & \text{if x is an integer} \\
0 & \text{if x is not an integer} \\
\end{cases}\)
Find \( \displaystyle \lim_{x \to 1} f(x)\). Is it same as \(f(1)\)
Solution 👉 Click Here
Here
The left hand limit is
\( LHL=\displaystyle \lim_{x \to 1^-} x= \lim_{x \to 1^-} 0 = \) 0
The right hand limit is
\(RHL= \displaystyle \lim_{x \to 1^+} x= \lim_{x \to 1^+} 0 = \) 0
Since,
LHL=RHL
The limit exist at x=1, and the limit value is 0
Next,
The functional value at x=1, is
\( f(x)= x =\) 1
So, The functional value and limit value is NOT same.
- Prove that
- \(\displaystyle \lim_{x \to 3} \left ( \frac{1}{x-3}-\frac{9}{x^3-3x^2}\right ) =\frac{2}{3}\)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 3} \left ( \frac{1}{x-3}-\frac{9}{x^3-3x^2}\right ) \)
=\(\displaystyle \lim_{x \to 3} \left ( \frac{1}{x-3}-\frac{9}{x^2(x-3)}\right )\)
= \(\displaystyle \lim_{x \to 3} \frac{1}{x-3} \left ( 1-\frac{9}{x^2}\right )\)
= \(\displaystyle \lim_{x \to 3} \frac{1}{x-3} \left ( \frac{x^2-9}{x^2}\right )\)
= \(\displaystyle \lim_{x \to 3} \left ( \frac{x+3}{x^2}\right )\)
= \(\frac{3+3}{3^2}\)
= \(\frac{2}{3}\)
- \(\displaystyle \lim_{x \to 3} \left ( \frac{x^2+9}{x^2-9}-\frac{3}{x-3}\right )=\frac{1}{2}\)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 3} \left ( \frac{x^2+9}{x^2-9}-\frac{3}{x-3}\right )\)
=\(\displaystyle \lim_{x \to 3} \left ( \frac{x^2+9}{(x+3)(x-3)}-\frac{3}{x-3}\right )\)
= \(\displaystyle \lim_{x \to 3} \left ( \frac{x^2+9-3(x+3)}{(x+3)(x-3)}\right )\)
= \(\displaystyle \lim_{x \to 3} \left ( \frac{x^2-3x}{(x+3)(x-3)}\right )\)
= \(\displaystyle \lim_{x \to 3} \left ( \frac{x(x-3)}{(x+3)(x-3)}\right )\)
= \(\displaystyle \lim_{x \to 3} \left ( \frac{x}{(x+3)}\right )\)
= \(\frac{3}{3+3}\)
= \(\frac{1}{2}\)
- Evaluate
- \(\displaystyle \lim_{x \to 2} \frac{x^{-3}-2^{-3}}{x-2}\)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 2} \frac{x^{-3}-2^{-3}}{x-2}\)
=\( (-3) (2)^{-3-1}\) Using formula \(\displaystyle \lim_{x \to a} \frac{x^n-a^n}{x-a}=na^{n-1}\), taking n=-3, a=2
=\( (-3) (2)^{-4}\)
=\( \frac{-3}{2^4}\)
=\( \frac{-3}{16}\)
- \(\displaystyle \lim_{x \to \infty} \frac{(2x-1)^6(3x-1)^4}{(2x+1)^{10}}\)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to \infty} \frac{(2x-1)^6(3x-1)^4}{(2x+1)^{10}}\)
=\(\displaystyle \lim_{x \to \infty} \frac{(2-\frac{1}{x})^6(3-\frac{1}{x})^4}{(2+\frac{1}{x})^{10}}\) Dividing by \(x^{10}\)
=\(\frac{(2-0)^6(3-0)^4}{(2+0)^{10}}\)
=\(\frac{3^4}{2^4}\)
=\( \frac{81}{16}\)
- \(\displaystyle \lim_{x \to 0} \frac{(1+x)^6-1}{(1+x)^2-1}\)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 0} \frac{(1+x)^6-1^6}{(1+x)^2-1^2}\)
= \(\displaystyle \lim_{(1+x) \to 1} \frac{\frac{(1+x)^6-1^6}{(1+x)-1} }{\frac{(1+x)^2-1^2}{(1+x)-1} } \)
=\( \frac{6.1^{6-1}}{2.1^{2-1}} \) Using formula \(\displaystyle \lim_{x \to a} \frac{x^n-a^n}{x-a}=na^{n-1}\)
=\(\frac{6}{2}\)
=\(3\)
- \(\displaystyle \lim_{x \to a} \frac{(x+2)^{\frac{5}{2}} -(a+2)^{\frac{5}{2}} }{x-a}\)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to a} \frac{(x+2)^{\frac{5}{2}} -(a+2)^{\frac{5}{2}} }{x-a}\)
= \(\displaystyle \lim_{(x+2) \to (a+2)} \frac{(x+2)^{\frac{5}{2}} -(a+2)^{\frac{5}{2}} }{(x+2)-(a+2)}\)
=\( \frac{5}{2}.(a+2)^{\frac{5}{2}-1} \) Using formula \(\displaystyle \lim_{x \to a} \frac{x^n-a^n}{x-a}=na^{n-1}\) taking \(n=\frac{5}{2}\), a=a+2
=\( \frac{5}{2}.(a+2)^{\frac{3}{2}} \)
- If \( \displaystyle \lim_{x \to a} \frac{x^3-a^3}{x-a}=27\), Find all possible values of a.
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to a} \frac{x^3-a^3}{x-a}=27\)
=\( 3.(a)^{3-1}=27 \) Using formula \(\displaystyle \lim_{x \to a} \frac{x^n-a^n}{x-a}=na^{n-1}\) taking \(n=3\)
=\( 3a^2=27 \)
=\( a^2=9 \)
=\( a=\pm 3 \)
- Find the limiting values of
- \( \displaystyle \lim_{x \to 0} \frac{\sin x^0}{x}\)
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to 0} \frac{\sin x^0}{x}\)
= \( \displaystyle \lim_{x \to 0} \frac{\sin (\frac{\pi x}{180})}{x}\)
= \( \displaystyle \lim_{x \to 0} \frac{\sin (\frac{\pi x}{180})}{\frac{\pi x}{180}} \frac{\pi}{180}\)
=\( 1.\frac{\pi}{180} \)
=\( \frac{\pi}{180} \)
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos 4 x}{1-\cos 6x}\)
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to 0} \frac{1-\cos 4 x}{1-\cos 6x}\)
= \( \displaystyle \lim_{x \to 0} \frac{1-\cos^2 4 x}{1+\cos 4 x}.\frac{1+\cos 6 x}{1-\cos^2 6x}\)
= \( \displaystyle \lim_{x \to 0} \frac{\sin^2 4 x}{1+\cos 4 x}.\frac{1+\cos 6 x}{\sin^2 6x}\)
= \( \displaystyle \lim_{x \to 0} \frac{\sin^2 4 x}{(4x)^2} . \frac{(6x)^2}{\sin^2 6 x} .\frac{1+\cos 6 x}{1+\cos 4 x} .\frac{(4x)^2}{(6x)^2}\)
= \( \displaystyle \lim_{x \to 0} \left (\frac{\sin 4 x}{4x} \right )^2 \left (\frac{6x}{\sin 6 x} \right )^2 \left ( \frac{1+\cos 6 x}{1+\cos 4 x} \right ) \left (\frac{4^2}{6^2} \right ) \)
= \( \left (1 \right )^2 \left (1 \right )^2 \left ( \frac{1+0}{1+0} \right ) \left (\frac{4}{9} \right ) \)
= \( \frac{4}{9} \)
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\frac{\pi}{2}-x}\)
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\frac{\pi}{2}-x}\)
= \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\sin (\frac{\pi}{2}-x)} {(\frac{\pi}{2}-x)}\)
= \(1\)
- \( \displaystyle \lim_{x \to 0} \frac{\tan 2 x-x}{3x-\sin x}\)
Solution 👉 Click Here
\( \displaystyle \lim_{x \to 0} \frac{\tan 2 x-x}{3x-\sin x}\) | =\( \displaystyle \lim_{x \to 0} \frac{\frac{\tan 2 x}{2}-1}{3-\frac{\sin x}{x}}\)
|
| =\( \frac{\displaystyle \lim_{x \to 0} \frac{\tan 2 x}{2x}.2-1}{3-\displaystyle \lim_{x \to 0} \frac{\sin x}{x}}\)
=\(\frac{1.2-1}{3-1}\)
=\(\frac{1}{2}\)
|
- \( \displaystyle \lim_{x \to \pi} \frac{1-\sin (\frac{x}{2})}{(\pi-x)^2}\)
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to \pi} \frac{1-\sin (\frac{x}{2})}{(\pi-x)^2}\)
= \( \displaystyle \lim_{x \to \pi} \frac{1-\cos (\frac{\pi}{2} -\frac{x}{2})}{(\pi-x)^2}\)
= \( \displaystyle \lim_{x \to \pi} \frac{1-\cos (\frac{\pi-x}{2})}{(\pi-x)^2}\)
= \( \displaystyle \lim_{x \to \pi} \frac{1-\cos^2 (\frac{\pi-x}{2})}{(\pi-x)^2} . \frac{1}{1+\cos (\frac{\pi-x}{2})}\)
= \( \displaystyle \lim_{x \to \pi} \frac{\sin^2 (\frac{\pi-x}{2})}{(\pi-x)^2}. \frac{1}{1+\cos (\frac{\pi-x}{2})}\)
= \( \displaystyle \lim_{x \to \pi} \left (\frac{\sin^2 (\frac{\pi-x}{2})}{(\frac{\pi-x}{2})} \right )^2. (\frac{1}{2})^2 .\frac{1}{1+\cos (\frac{\pi-x}{2})}\)
= \( (1 )^2. \frac{1}{4} .\frac{1}{1+1}\)
= \(\frac{1}{8}\)
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{1+\cos 2x}{(\pi-2x)^2}\)
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{1+\cos 2x}{(\pi-2x)^2}\)
= \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{1-\cos (\pi-2x)}{(\pi-2x)^2}\)
= \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{1-\cos^2 (\pi-2x)}{(\pi-2x)^2}. \frac{1}{1+\cos (\pi-2x)} \)
= \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\sin^2 (\pi-2x)}{(\pi-2x)^2}. \frac{1}{1+\cos (\pi-2x)} \)
= \( \displaystyle \lim_{x \to \frac{\pi}{2}} \left ( \frac{\sin (\pi-2x)}{(\pi-2x)} \right )^2. \lim_{x \to \frac{\pi}{2}} \frac{1}{1+\cos (\pi-2x)} \)
= \( (1)^2 \frac{1}{1+1} \)
= \( \frac{1}{2} \)
- \( \displaystyle \lim_{x \to 0} \sin (\frac{1}{x})\)
Solution 👉 Click Here
Let \(\frac{1}{x}=u\) then
\( \displaystyle \lim_{x \to 0} \sin (\frac{1}{x}) = \displaystyle \lim_{u \to \infty} \sin u \)
The left hand limit is
As \( x \to 0^-\) then \(\displaystyle \lim_{x \to 0^-} \frac{1}{x} =\lim_{h \to 0^-} \frac{1}{0-h}=-\infty\)
Thus
\(\displaystyle \lim_{u \to -\infty} \sin (u)=\sin (-\infty)=- \sin \infty \)
The right hand limit is
As \( x \to 0^+\) then \(\displaystyle \lim_{x \to 0^+} \frac{1}{x} =\lim_{h \to 0^+} \frac{1}{0+h}=\infty\)
Thus
\(\displaystyle \lim_{u \to \infty} \sin (u)= \sin (\infty) \)
We see that, function \( \sin u\) goes up to infinity from the right. From the left,it goes down to negative infinity.
So, the limit of a function \( \sin (\frac{1}{x}) \) does NOT exist at x=0.
For more justification
- given the function \( f(x)=\sin \frac{1}{x} \)
- take \( x=\frac{1}{\frac{\pi}{2} (2n+1)};n \in Z \) then \( \frac{1}{x}=\frac{\pi}{2} (2n+1);n \in Z \) and \( \sin (\frac{1}{x})=\sin[\frac{\pi}{2} (2n+1)] \)
- then value of \(f(x)= \sin[\frac{\pi}{2} (2n+1)] \) are alternatively to 1 and -1 as x approaches to 0
- so, \( f(x)=\sin \frac{1}{x} \) has oscillating discontinuity at 0
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
- \( \displaystyle \lim_{x \to 0} x \sin (\frac{1}{x})\)
Solution 👉 Click Here
Let \(\frac{1}{x}=u\) then
\( \displaystyle \lim_{x \to 0} x \sin (\frac{1}{x}) = \displaystyle \lim_{u \to \infty} \frac{1}{u} \sin u \)
The left hand limit is
As \( x \to 0^-\) then \(\displaystyle \lim_{x \to 0^-} \frac{1}{x} =\lim_{h \to 0^-} \frac{1}{0-h}=-\infty\)
Thus
\(\displaystyle \lim_{u \to -\infty} \frac{1}{u} \sin (u)= \frac{1}{\infty }\sin (-\infty)=0. (\sin \infty) =0\)
The right hand limit is
As \( x \to 0^+\) then \(\displaystyle \lim_{x \to 0^+} \frac{1}{x} =\lim_{h \to 0^+} \frac{1}{0+h}=\infty\)
Thus
\(\displaystyle \lim_{u \to \infty} \frac{1}{u} \sin (u)= \frac{1}{\infty} \sin (\infty) =0. \sin (\infty)=0\)
We see that, function \( \frac{1}{u} \sin (u)\) goes up to 0 from both side.
So, the limit of a function \( x \sin (\frac{1}{x}) \) exist at x=0, and the limit value is 0.
For more justification
- \( \displaystyle \lim_{x \to a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}\)
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}\)
= \( \displaystyle \lim_{x \to a} \frac{2 \cos (\frac{x+a}{2})\sin (\frac{x-a}{2})}{x-a}. (\sqrt{x}+\sqrt{a})\)
= \( \left ( \displaystyle \lim_{x \to a} \frac{\sin (\frac{x-a}{2}) }{(\frac{x-a}{2}) } \right ) . \left ( \displaystyle \lim_{x \to a} \cos (\frac{x+a}{2}) .(\sqrt{x}+\sqrt{a}) \right )\)
= \( (1) .\cos a .(2\sqrt{a}) \)
= \( 2\sqrt{a}\cos a \)
- \( \displaystyle \lim_{x \to a} (a-x)\tan (\frac{\pi x}{2a})\)
Solution 👉 Click Here
Solution
\( \displaystyle \lim_{x \to a} (a-x)\tan (\frac{\pi x}{2a})\)
= \( \displaystyle \lim_{x \to a} (a-x)\tan (\frac{\pi x}{2a})\)
= \( \displaystyle \lim_{x \to a} (a-x)\cot (\frac{\pi }{2}-\frac{\pi x}{2a})\)
= \( \displaystyle \lim_{x \to a} (a-x)\cot (\frac{\pi(a-x) }{2a})\)
= \( \displaystyle \lim_{x \to a} \frac{a-x}{\tan (\frac{\pi(a-x) }{2a})}\)
= \( \displaystyle \lim_{x \to a} \frac{(\frac{\pi(a-x) }{2a})} {\tan (\frac{\pi(a-x) }{2a}) } . (\frac{2a}{\pi}) \)
= \( \frac{2a}{\pi}\)
Solution Method 2
Let a-x=h, then \(x \to a\) implies \(h \to 0\) and \( \frac{x}{a}=1+\frac{h}{a}\)
Solution
\( \displaystyle \lim_{x \to a} (a-x)\tan (\frac{\pi x}{2a})\)
= \( \displaystyle \lim_{h \to 0} (h)\tan \frac{\pi}{2} (1+\frac{h}{a})\)
= \( \displaystyle \lim_{h \to 0} (h)\tan (\frac{\pi}{2}+\frac{\pi h}{2 a})\)
= \( \displaystyle \lim_{h \to 0} (h)\cot (\frac{\pi h}{2 a})\)
= \( \displaystyle \lim_{h \to 0} \frac{h}{\tan (\frac{\pi h}{2 a})}\)
= \( \displaystyle \lim_{h \to 0} \frac{(\frac{\pi h}{2 a})}{\tan (\frac{\pi h}{2 a})}. (\frac{2a}{\pi})\)
= \( \frac{2a}{\pi}\)
- \( \displaystyle \lim_{y \to 0} \frac{(x+y)\sec (x+y)-x \sec x}{y}\)
Solution 👉 Click Here
\( \displaystyle \lim_{y \to 0} \frac{(x+y)\sec (x+y)-x \sec x}{y}\) | =\( \displaystyle \lim_{y \to 0} \frac{x\sec (x+y)+y\sec (x+y)-x \sec x}{y}\)
|
| =\( \displaystyle \lim_{y \to 0} \frac{x\sec (x+y)-x \sec x}{y} + \lim_{y \to 0} \frac{y\sec (x+y)}{y} \)
=\( \displaystyle x \lim_{y \to 0} \frac{\sec (x+y)- \sec x}{y} +\lim_{y \to 0} \sec (x+y) \)
=\( \displaystyle x \lim_{y \to 0} \frac{\cos x-\cos (x+y)}{y\cos x \cos (x+y)} +\sec x \)
=\( \displaystyle x \lim_{y \to 0} \frac{-2 \sin (\frac{x+x+y}{2}) \sin (\frac{x-x-y}{2})}{y\cos x \cos (x+y)} +\sec x \)
=\( \displaystyle x \lim_{y \to 0} \frac{2 \sin (x+\frac{y}{2}) \sin (\frac{y}{2})}{y\cos x \cos (x+y)} +\sec x \)
=\( \displaystyle x \lim_{y \to 0} \frac{ \sin (x+\frac{y}{2}) }{\cos x \cos (x+y)}.\lim_{y \to 0} \frac{ \sin (\frac{y}{2})}{\frac{y}{2}} +\sec x \)
=\( x \frac{ \sin (x+0) }{\cos x \cos (x+0)}.1 +\sec x \)
=\( x \frac{ \sin x }{\cos x \cos x} +\sec x \)
=\( x \tan x \sec x +\sec x \)
|
-
A function is defined as \(f(x)=\begin{cases} 3x^2+2 & \text { if } x<1 \\ 2x+3 & \text { if } x \ge 1 \end{cases}\).
Find \(\displaystyle \lim_{x \to 1}f(x) \)
Solution 👉 Click Here
Solution
The left hand limit is
\( LHL=\displaystyle \lim_{x \to 1^-} 3x^2+2= 3.1^2+2= \) 5
The right hand limit is
\(RHL= \displaystyle \lim_{x \to 1^+} 2x+3= 2.1+3= \) 5
Since,
LHL=RHL
The limit exist at x=1, and the limit value is 5
- A function is defined as \(f(x)=\begin{cases} 3+2x & \text { if } -\frac{3}{2} \le x < 0\\ 3-2x & \text { if } 0 \le x < \frac{3}{2} \\ -3-2x & \text { if } x \ge \frac{3}{2} \end{cases}\).
Find \(\displaystyle \lim_{x \to 0}f(x) \) and \(\displaystyle \lim_{x \to \frac{3}{2}}f(x) \) if they exist.
Solution 👉 Click Here
Solution \(\displaystyle \lim_{x \to 0}f(x) \)
The left hand limit is
\( LHL=\displaystyle \lim_{x \to 0^-} 3+2x= 3+2.0 = \) 3
The right hand limit is
\(RHL= \displaystyle \lim_{x \to 0^+} 3-2x=3-2.0 = \) 3
Since,
LHL=RHL
The limit exist at x=0, and the limit value is 3
Solution \(\displaystyle \lim_{x \to 3/2}f(x) \)
The left hand limit is
\( LHL=\displaystyle \lim_{x \to \frac{3}{2}^-} 3-2x= 3-3= \) 0
The right hand limit is
\(RHL= \displaystyle \lim_{x \to \frac{3}{2}^+} -3-2x=-3-3 = \) -6
Since,
LHL≠RHL
The limit does NOT exist at x=3/2
- \(\displaystyle \lim_{x \to 0} \frac{e^{px}-1}{e^{qx}-1} \)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 0} \frac{e^{px}-1}{e^{qx}-1} \)
= \(\displaystyle \lim_{x \to 0} \frac{e^{px}-1}{px} . \frac{qx}{e^{qx}-1} . \frac{px}{qx}\)
= \(\displaystyle \lim_{x \to 0} \frac{e^{px}-1}{px} . \lim_{x \to 0} \frac{qx}{e^{qx}-1} . \frac{p}{q}\)
= \(1.1 . \frac{p}{q}\) Using formula \(\displaystyle \lim_{x \to 0} \frac{e^x-1}{x}=1\)
= \(\frac{p}{q}\)
- \(\displaystyle \lim_{x \to 0} \frac{e^x-e^{-x}-x}{x} \)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 0} \frac{e^x-e^{-x}-x}{x} \)
= \(\displaystyle \lim_{x \to 0} \frac{e^x-1-e^{-x}+1-x}{x} \)
= \(\displaystyle \lim_{x \to 0} \frac{e^x-1}{x}-\frac{e^{-x}-1}{x}-\frac{x}{x} \)
= \(\displaystyle \lim_{x \to 0} \frac{e^x-1}{x}+\lim_{x \to 0} \frac{e^{-x}-1}{-x}-1\)
= \(1+1-1\) Using formula \(\displaystyle \lim_{x \to 0} \frac{e^x-1}{x}=1\)
= \(1+1-1\)
- \(\displaystyle \lim_{x \to 0} \frac{a^x-1}{b^x-1} \)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 0} \frac{a^x-1}{b^x-1} \)
= \(\displaystyle \lim_{x \to 0} \frac{a^x-1}{x} . \frac{x}{b^x-1} \) Using formula \(\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=\log a\)
= \(\log a. \frac{1}{\log b}\)
= \(\log (a-b)\)
- \(\displaystyle \lim_{x \to 0} \frac{2^x-1}{\sin x} \)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 0} \frac{2^x-1}{\sin x} \)
= \(\displaystyle \lim_{x \to 0} \frac{2^x-1}{x}. \lim_{x \to 0} \frac{x}{\sin x} \) Using formula \(\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=\log a\), taking a=2
= \(\log 2. 1\)
= \(\log 2\)
- \(\displaystyle \lim_{x \to 0} \frac{e^{\sin x} -\sin x -1}{x} \)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to 0} \frac{e^{\sin x} -\sin x -1}{x} \)
= \(\displaystyle \lim_{x \to 0} \frac{e^{\sin x}-1}{x} -\lim_{x \to 0} \frac{\sin x}{x} \)
= \(\displaystyle \lim_{x \to 0} \frac{e^{\sin x}-1}{\sin x} .\lim_{x \to 0} \frac{\sin x}{x} - \lim_{x \to 0} \frac{\sin x}{x} \)
= \( 1 .1 - 1 \) Using formula \(\displaystyle \lim_{x \to 0} \frac{e^x-1}{x} =1\)
= \(0\)
- \(\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{e^{\cos x} -1}{\frac{\pi}{2}-x} \)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{e^{\cos x} -1}{\frac{\pi}{2}-x} \)
= \(\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{e^{\sin (\frac{\pi}{2}-x)} -1}{\frac{\pi}{2}-x} \)
= \(\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{e^{\sin (\frac{\pi}{2}-x)} -1}{\sin (\frac{\pi}{2}-x)}
. \lim_{x \to 0} \frac{\sin (\frac{\pi}{2}-x)}{\frac{\pi}{2}-x} \)
= \(1 .1 \) Using formula \(\displaystyle \lim_{x \to 0} \frac{e^x-1}{x} =1\)
= \(1 \)
- \(\displaystyle \lim_{x \to e} \frac{\log x-1}{x-e} \)
Solution 👉 Click Here
Solution
\(\displaystyle \lim_{x \to e} \frac{\log x-1}{x-e} \)
= \(\displaystyle \lim_{x \to e} \frac{1}{e}.\frac{\log x-\log e}{\frac{x}{e}-1} \)
= \(\frac{1}{e} . \displaystyle \lim_{x \to e} \frac{\log (\frac{x}{e})}{\frac{x}{e}-1} \)
= \(\frac{1}{e} . \displaystyle \lim_{x \to e} \frac{\log (1+[\frac{x}{e}-1])}{[\frac{x}{e}-1]} \)
= \(\frac{1}{e} \) Using formula \(\displaystyle \lim_{x \to 0} \frac{\log (1+x)}{x} =1\)
No comments:
Post a Comment