Basic principle of counting
เคฌเคธ्เคคुเคนเคฐुเคो เคเคฃเคจा เคเคฐ्เคจเคो เคฒाเคि เคจिเคถ्เคिเคค เคช्เคฐเคाเคฐเคो เคจिเคฏเคฎเคो เคช्เคฐเคฏोเค เคเคฐिเคจ्เค เคเคธเคฒाเค Counting Principle เคญเคจिเคจ्เค । เคเคธ्เคคै
📙 | 📙 | 📙 | 📙 | 📙 |
📙 | 📙 | 📙 | 📙 | 📙 |
📙 | 📙 | 📙 | 📙 | 📙 |
เคฏเคธै เคเคฐि เคฌเคธ्เคคुเคนเคฐुเคो เคเคฃเคจा เคเคฐ्เคจ เคช्เคฐเคฏोเค เคเคฐिเคจे Counting Principle เคฎเคง्เคฏ เคคเคฒเคा เคฆुเคเคตเคा principle เคฒाเค Basic principle of counting เคฎाเคจिเคจ्เค।
Basic principle of counting
- Addition Principle
If a task consists of a sequence of choices in which there are p selections for the first choice, OR q selections for the second choice, then the task of making either one first or one second choice can be done in
p+q ways
เคเคธ्เคคै, เคฆुเคเคตเคा pen เคฐ เคคिเคจเคตเคा marker เคฌाเค เคเคเคा pen เคตा เคเคเคा marker selection เคเคฐ्เคจเคो เคฒाเคि 2+3 เคคเคฐिเคा🖋️ 🖋️ 🖍️ 🖍️ 🖍️ - Multiplication Principle
If a task consists of a sequence of choices in which there are p selections for the first choice, AND q selections for the second choice, then the task of making one first and one second choice can be done in
p*q ways
เคเคธ्เคคै, เคฆुเคเคตเคा pen เคฐ เคคिเคจเคตเคा marker เคฌाเค เคเคเคा pen เคฐ เคเคเคा marker selection เคเคฐ्เคจเคो เคฒाเคि 3*2 เคคเคฐिเคा🖋️ 🖋️ 🖍️ 🖍️ 🖍️
Factorial
The notation n! represents the product of first n natural numbers, i.e.,n!=n×(n-1)×(n-2)× . . . ×3×2×1
is We read this n! symbol as ‘n factorial’.
1 !=1
2 !=2 × 1
3 !=3 × 2 × 1
4 !=4 ×3 × 2 × 1
and so on.
We define
0 ! = 1
Examples
- How many three-digit even numbers can be formed?
Complete Solution ๐ Click Here
We know that
There are 10 digits
0,1,2,3,4,5,6,7,8,9
So, it can be used to form three digit number.Place value table เคธเคฏ (Hundred) เคฆเคถ (Ten) เคเค (Unit) nine possibility
(1,2,3,4,5,6,7,8,9)ten possibility
(0,1,2,3,4,5,6,7,8,9)five possibility
(0,2,4,6,8)So, all together, there are
9*10*5=450 three digit even numbers - How many three-digit number can be formed from 3,4,5 if repetition is allowed?
Complete Solution ๐ Click Here
We know that
There are 3 digits
3,4,5
So, it can be used to form three digit number.Place value table เคธเคฏ (Hundred) เคฆเคถ (ten) เคเค (Unit) three possibility
(3,4,5)three possibility
(3,4,5)three possibility
(3,4,5)So, all together, there are
\(3*3*3=3^3=27\) three digit numbers - How many three-digit number can be formed from 3,4,5 if repetition is NOT allowed?
Complete Solution ๐ Click Here
We know that
There are 3 digits
3,4,5
So, it can be used to form three digit number.Place value table เคธเคฏ (Hundred) เคฆเคถ (ten) เคเค (Unit) three possibility
(3,4,5)two possibility
(3,4,5)
one is used in 100 placeone possibility
(3,4,5)
one is used in 100 place
one is used in 10 placeSo, all together, there are
\(3*2*1=3!=6\) three digit umbers - How many three-digit number can be formed from 1,2,3,4,5 if repetition is allowed?
Complete Solution ๐ Click Here
We know that
There are 5 digits
1,2,3,4,5
So, it can be used to form three digit number.Place value table เคธเคฏ (Hundred) เคฆเคถ (ten) เคเค (Unit) five possibility
(1,2,3,4,5)five possibility
(1,2,3,4,5)five possibility
(1,2,3,4,5)So, all together, there are
\(5 \times 5 \times 5=5^3=125\) three digit numbers - How many three-digit number can be formed from 1,2,3,4,5 if repetition is NOT allowed?
Complete Solution ๐ Click Here
We know that
There are 5 digits
1,2,3,4,5
So, it can be used to form three digit number.Place value table เคธเคฏ (Hundred) เคฆเคถ (ten) เคเค (Unit) five possibility
(1,2,3,4,5)four possibility
(1,2,3,4,5)three possibility
(1,2,3,4,5)So, all together, there are
\(5 \times 4 \times 3=\frac{5!}{(5-3)!}=60\) three digit numbers
Permutation
Permutations is concerned with determining the number of different ways of arranging objects out of a given number of objects, without actually listing them. There are some basic counting techniques which will be useful in determining the number of different ways of arranging oobjects in definite order.
Therefore,
A permutation is a mathematical tool to arrange given objects in order. Permutations are for lists so order is important.
Let us see some cases:
- set of objects all different
- repeated use of the same objects
- set of objects not all different
- circular arrangement
Permutation: set of objects all different
- The permutations of r objects taken all at a time out of n objects, repetition is NOT allowed is:
\(\frac{n!}{(n-r)!}\) - The permutations of n objects taken all at a time out of n objects, repetition is NOT allowed is:
\(n!\)
Permutation: repeated use of the same objects
- The permutations of r objects taken all at a time out of n objects, repetition is allowed is:
\(r^n\) - The permutations of n objects taken all at a time out of n objects, repetition is allowed is:
\(n^n\)
Permutation: set of objects not all different (Permutation of repeated objects)
Assume that there are \(n_1\) objects of type 1, \(n_2\) objects of type 2,...,\(n_k\) objects of type k and \(n = n_1 + n_2 + · · · + n_k\) . The number of distinguishable permutations of these n objects is :
\(\frac{n!}{n_1! n_2!...n_k!} \)
This number is also the number of ways to place n distinct objects into k distinguished group with \(n_1\) objects in the first group, \(n_2\) in the second group,..., \(n_k\) in the last group.
Permutation: circular arrangement
เคฌเคธ्เคคुเคนเคฐुเคฒाเค circle เคฎा arrange เคเคฐ्เคจु เคชเคฐेเคฎा, เคเคธ्เคคै n เคตเคा เคฌเคธ्เคคुเคนเคฐुเคฒाเค เคเคเคा circle เคฎा arrange เคเคฐ्เคจु เคชเคฐेเคฎा เคเคฎ्เคฎा (n-1)! เคตเคा arrangement เคนเคฐु เคฌเคจाเคเคจ เคธเคिเคจ्เค।
The number of ways to arrange n distinct objects along a fixed circle is
\(\frac{n!}{n} = (n-1)! \)
Examples
- Circular permutation for 1,2,3
เคคिเคจเคตเคा เคฌเคธ्เคคुเคนเคฐु 1,2,3 เคฒाเค circle เคฎा arrange เคเคฐ्เคจु เคชเคฐेเคฎा เฅจ เคตเคा เคฎाเคค्เคฐ distinct circular permutations เคนเคฐु เคฌเคจाเคเคจ เคธเคिเคจ्เค। เคเคธ्เคคै
{1,3,2} and {1,2,3} - Circular permutation for 1,2,3,4.
เคाเคฐเคตเคा เคฌเคธ्เคคुเคนเคฐु 1,2,3,4 เคฒाเค circle เคฎा arrange เคเคฐ्เคจु เคชเคฐेเคฎा เฅฌ เคตเคा เคฎाเคค्เคฐ distinct circular permutations เคนเคฐु เคฌเคจाเคเคจ เคธเคिเคจ्เค। เคเคธ्เคคै
{1,2,3,4}
{1,2,4,3}
{1,3,2,4}
{1,3,4,2}
{1,4,2,3}
{1,4,3,2}
เคฏเคนाँ circle เคฒाเค rotate เคเคฐ्เคจ เคธเคिเคจे, เคฐ rotate เคเคฐ्เคจ เคเคฐ्เคฆा เคเคธ्เคคै เคนुเคจे เคญเคเคोเคฒे cyclic permutations of objects เคนเคฐु equivalent เคนुเคจ्เคเคจ เคเคธเคฒे เคเคฐ्เคฆा \(\frac{n!}{n} = (n-1)! \) เคो เคช्เคฐเคฏोเค เคเคฐ्เคจु เคชเคฐ्เคฆเค।
Examples
- How many three-digit even numbers can be formed?
- How many three-digit number can be formed from 3,4,5 if repetition is allowed?
- How many three-digit number can be formed from 3,4,5 if repetition is NOT allowed?
- How many three-digit number can be formed from 1,2,3,4,5 if repetition is allowed?
- How many three-digit number can be formed from 1,2,3,4,5 if repetition is NOT allowed?
- How many three-digit number can be formed if repetition is NOT allowed?
Solution
Permutations of 10 digits taken 3 at a time is
P(10,3)
These permutations will include 0's at 100’s place. For example, 012, 055, . . ., etc are such numbers which are actually 2-digit numbers so must be subtracted from P(10,3) to get the required number.
Here
We fix 0 at the 100’s place and rearrange the remaining 9 digits taking 2 at a time. This number is
P(9,2)
So
The total three digit number is
P(10,3)-P(9,2) - How many different 5-letter words can be formed from the word DEFINITION?
Here,
number of letters n= 10
letter N repeats twice , so \(n_1=2\)
letter I repeats thrice , so \(n_2=3\)
Thus, the number of arrangements is
\(\frac{n!}{n_1!n_2!} =\frac{10!}{2!3!}= 2520 \) ways
No comments:
Post a Comment