Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such functions are called continuous.
Intuitively, a function is continuous at a particular point if there is no break in its graph at that point.
let’s consider some examples that fail to meet our intuitive notion of what it means to be continuous at a point.
A function \( f(x) = x^2 + 1 \) is continuous at 2, since \( \displaystyle \lim_{x \rightarrow 2} f(x) =5 =f(2)\)
A function \( f(x) = \sqrt{4-x^2} \) is NOT continuous at 3 since f(3) is not defined.
A function \( f(x)=\frac{1}{x-2}\) is not continuous at 2 because f(2) is not defined.
NOTES
The constant function, f (x) = c, \( \forall x \in R\) is continuous on R.
The identity function, f (x) = x, \( \forall x \in R\) is continuous on R.
The function f (x) = x n, \( x \in N\) is continuous on R.
The function f (x) = sinx is continuous.
Example 1
Test the continuity of a function \( f(x)= \begin{cases} -x^2 &\text { for } x \ne 2 \\ 0 &\text {for } x=2 \end{cases} \) at x=2.
Solution
0,0
A
B
The solution is as follows At \( x=2^{-}\), the left hand limit is \( \displaystyle \lim_{x \to 2^{-}} f(x)= \lim_{x \to 2^{-} } -x^2 =-4\)
LHL At \( x=2^{+}\), the right hand limit is \( \displaystyle \lim_{x \to 2^{+}} f(x)= \lim_{x \to 2^{+}} = -x^2 =-4\)
RHL At x=2, the value of the function is f(2) = 0
Functional Value Since, limiting value and functional value are not equal, f(x) is not continuous at x=2.
Example 2
Test the continuity of a function \( f(x)= \begin{cases} -x^2 +2 &\text { for } x \ne 2 \\ 1 &\text { for } x=2 \end{cases} \) at x=2.
Solution
0,0
A
B
The solution is as follows At \( x=2^{-}\), the left hand limit is \( \displaystyle \lim_{x \to 2^{-}} f(x)= \lim_{x \to 2^{-} } -x^2+2 =-2\)
LHL At \( x=2^{+}\), the right hand limit is \( \displaystyle \lim_{x \to 2^{+}} f(x)= \lim_{x \to 2^{+}} = -x^2+2 =-2\)
RHL At x=2, the value of the function is f(2) = 1
Functional Value Since, limiting value and functional value are not equal, f(x) is not continuous at x=2.
Example 3
Test the continuity of a function \(f(x)=\frac{|x|}{x}\) for \(x\ne 0\) at x=0.
Solution
0,0
A
B
The solution is At x = 0, the value of f(0) is not defined. Also, the left hand limit is -1, whereas the right hand limit is 1 So, the function is not continuous at x=0.
Example 4
Is\( f(x)=\frac{x+4}{x-3}\) continuous at x =1? At x =3?
Solution
0,0
0,0
0,0
The solution is as follows At x=1, the limit value is \( \displaystyle \lim_{x \to 1} f(x)= \lim_{x \to 1}\frac{x+4}{x-3}=\lim_{x \to 1} \frac{1+4}{1-3} =\frac{5}{-2}\)
This is Limit Value At x=1, the value of the function is \( \displaystyle \lim_{x \to 1} f(x)= \lim_{x \to 1} \frac{1+4}{1-3} =\frac{5}{-2}\)
This is Functional Value Since, limiting value and functional value are equal, f(x) is continuous at x=1. Next,
At x=3, the limit value is \( \displaystyle \lim_{x \to 3} f(x)= \lim_{x \to 3} \frac{x+4}{x-3} =\frac{7}{0}\)=undefined
Since, the limiting value is undefined, f(x) is NOT continuous at x=3.
Test the continuity of discontinuity of the following function by calculating the left hand limits, the right-hand limits and the values of the functions at points specified.
Given that \( f(x)=\begin{cases} 2x+1 & \text{for } x < 1 \\ 2 & \text{for } x =1 \\ 3x & \text{for } x >1 \end{cases}\)
At x=1, we compute the following
The functional value is \(f(x)=\) 2
The left hand limit is \(LHL=\displaystyle \lim_{x \to 1^-} f(x)= \lim_{x \to 1} 2x+1=2.1+1=\) 3
The right hand limit is \(RHL= \displaystyle \lim_{x \to 1^+} f(x)= \lim_{x \to 1} 3x=3.1=\) 3
Since, LHL,RHL, f(x) are NOT equal
The function is NOT continuous at x=1
0,0
f(x)
This completes the solution
A function is defined as follows
\( f(x)= \begin{cases} x^2+2 & \text{for } x < 5 \\ 20 & \text{for } x =5 \\ 3x+12 & \text{for } x > 5 \end{cases} \). Show that f(x) has removable discontinuity at x=5
Given that \( f(x)=\begin{cases} x^2+2 & \text{for } x < 5 \\ 20 & \text{for } x =5 \\ 3x+12 & \text{for } x > 5 \end{cases} \)
At x=5, we compute the following
The functional value is \(f(x)=\) 20
The left hand limit is \(LHL=\displaystyle \lim_{x \to 5^-} f(x)= \lim_{x \to 5} x^2+2=5^2+2=\) 27
The right hand limit is \(RHL= \displaystyle \lim_{x \to 5^+} f(x)= \lim_{x \to 5} 3x+12=3.5+12=\) 27
Since, LHL=RHL≠f(x)
The function has removable discontinuity at x=5
0,0
f(x)
This completes the solution
A function is defined as follows
\( f(x)= \begin{cases} 2x-3 & \text{for } x < 2 \\ 2 & \text{for } x =2 \\ 3x-5 & \text{for } x > 2 \end{cases} \).
Is the function f(x) continuous at x=2? If not, how can the function f(x) be made continuous at x=2?
Given that \( f(x)=\begin{cases} 2x-3 & \text{for } x < 2 \\ 2 & \text{for } x =2 \\ 3x-5 & \text{for } x > 2 \end{cases} \)
At x=2, we compute the following
The functional value is \(f(x)=\) 2
The left hand limit is \(LHL=\displaystyle \lim_{x \to 2^-} f(x)= \lim_{x \to 2} 2x-3=2.2-3=\) 1
The right hand limit is \(RHL= \displaystyle \lim_{x \to 2^+} f(x)= \lim_{x \to 2} 3x-5=3.2-5=\) 1
0,0
f(x)
Since, LHL=RHL≠f(x)
The function has removable discontinuity at x=2, so the function f(x) be made continuous at x=2 be redefining the function as below.
\( f(x)= \begin{cases} 2x-3 & \text{for } x < 2 \\ 1 & \text{for } x =2 \\ 3x-5 & \text{for } x > 2 \end{cases} \).
This completes the solution
A function is defined as follows
\( f(x)= \begin{cases} kx+3 & \text{for } x \ge 2 \\ 3x-1 & \text{for } x < 2 \end{cases} \). Find the value of k so that f(x) is continuous at x=2
Given that \( f(x)=\begin{cases} kx+3 & \text{for } x \ge 2 \\ 3x-1 & \text{for } x < 2 \end{cases} \)
At x=2, we compute the following
The functional value is \(f(x)=kx+3=\) 2k+3
The left hand limit is \(LHL=\displaystyle \lim_{x \to 2^-} f(x)= \lim_{x \to 2} 3x-1=3.2-1=\) 5
The right hand limit is \(RHL= \displaystyle \lim_{x \to 2^+} f(x)= \lim_{x \to 2} kx+3=\) 2k+3
Since the functinuous at x=2, we must have LHL=RHL=f(x)
or 2k+3=5
or k=1
This completes the solution
A function is defined as follows
\( f(x)= \begin{cases} \frac{2x^2-18}{x-3} & \text{for } x \ne 3 \\ k & \text{for } x =3 \end{cases} \). Find the value of k so that f(x) is continuous at x=3
Given that \( f(x)=\begin{cases} \frac{2x^2-18}{x-3} & \text{for } x \ne 3 \\ k & \text{for } x =3 \end{cases} \)
At x=3, we compute the following
The functional value is \(f(x)=\) k
The left hand limit is \(LHL=\displaystyle \lim_{x \to 3^-} f(x)= \lim_{x \to 3} \frac{2x^2-18}{x-3}=2{x+3}=2{3+3}=\) 12
The right hand limit is \(RHL= \displaystyle \lim_{x \to 3^+} f(x)= \lim_{x \to 3} \frac{2x^2-18}{x-3}=2{x+3}=2{3+3}=\) 12
Since the functinuous at x=3, we must have LHL=RHL=f(x)
or k=12
This completes the solution
Additional Questions [BCB, page 394]
Define the continuity of a function at a point. Give with reason, an example of a continuouss function at a point. Is the function \(f(x)=\frac{1}{1-x}\) continuous at the point x=1?
Let 𝑓(𝑥) be a function defined at all values in an open interval containing a Then we say that f(x) is continuous at a if
for a given number \(\epsilon > 0\), there exists a number \(\delta > 0\)such that |f(x)-f(a)|<\(\epsilon\) whenever |x-a|<\(\delta\)
OR
the function f(x) is continuous at a if the following three conditions holds
Let \( f(x)= \begin{cases} -x^2 +2 &\text { for } x \ne 2 \\ -2 &\text { for } x=2 \end{cases} \) thn f(x) is continuous at x=2.
0,0
Because At \( x=2^{-}\), the left hand limit is \( \displaystyle \lim_{x \to 2^{-}} f(x)= \lim_{x \to 2^{-} } -x^2+2 =-2\)
LHL At \( x=2^{+}\), the right hand limit is \( \displaystyle \lim_{x \to 2^{+}} f(x)= \lim_{x \to 2^{+}} = -x^2+2 =-2\)
RHL At x=2, the value of the function is f(2) = -2
Functional Value Since, limiting value and functional value are equal, f(x) is continuous at x=2.
When a function f(x) is said to be continuous at a point x=a? Discuss the continuity of \(f(x)=\begin{cases} x^2+2 & \text {for } x \le 5 \\ 3x+12 & \text{for } x > 5 \end{cases}\) at x=5
Let 𝑓(𝑥) be a function defined at all values in an open interval containing a Then we say that f(x) is continuous at a if
for a given number \(\epsilon > 0\), there exists a number \(\delta > 0\)such that |f(x)-f(a)|<\(\epsilon\) whenever |x-a|<\(\delta\)
OR
the function f(x) is continuous at a if the following three conditions holds
Given \(f(x)=\begin{cases} x^2+2 & \text {for } x \le 5 \\ 3x+12 & \text{for } x > 5 \end{cases}\) at x=5.
0,0
Here At \( x=5^{-}\), the left hand limit is \( \displaystyle \lim_{x \to 5^{-}} f(x)= \lim_{x \to 5^{-} } x^2+2 =27\)
LHL At \( x=5^{+}\), the right hand limit is \( \displaystyle \lim_{x \to 5^{+}} f(x)= \lim_{x \to 5^{+}} = 3x+12 =27\)
RHL At x=5, the value of the function is \(f(2) =x^2+2= 27\)
Functional Value Since, limiting value and functional value are equal, f(x) is continuous at x=5.
At what point is the function \(f(x)=\frac{x+1}{(x-2)(x-3)}\) (i) discontinuous (ii) continuous ?
Solution
The function \(f(x)=\frac{x+1}{(x-2)(x-3)}\) is (i) discontinuous at x=2 and x=3 (ii) is continuous in other points
Doiscuss the continuity of the function f(x) at the point x=0.
\(f(x)=\begin{cases} x & \text {for } x > 0 \\ 1 & \text{for } x=0 \\ -x & \text{for } x < 0 \end{cases}\)
Given \(f(x)=\begin{cases} x & \text {for } x > 0 \\ 1 & \text{for } x=0 \\ -x & \text{for } x < 0 \end{cases}\)
0,0
Here At \( x=0^{-}\), the left hand limit is \( \displaystyle \lim_{x \to 0^{-}} f(x)= \lim_{x \to 0^{-} } -x =0\)
LHL At \( x=0^{+}\), the right hand limit is \( \displaystyle \lim_{x \to 0^{+}} f(x)= \lim_{x \to 0^{+}} = x =0\)
RHL At x=0, the value of the function is \(f(0) =1\)
Functional Value Since, limiting value and functional value are NOT equal, f(x) is NOT continuous at x=0.
A function f(x) is defind as follows. \(f(x)=\begin{cases} 2x+1 & \text {for } x < 1 \\ 2 & \text{for } x=1 \\ 3x & \text{for } x > 0 \end{cases}\)
Calculate the left hand limit and right hand limit of f(x) at x=1. Is the function continuous at x=1?
Given \(f(x)=\begin{cases} 2x+1 & \text {for } x < 1 \\ 2 & \text{for } x=1 \\ 3x & \text{for } x > 0 \end{cases}\)
0,0
Here At \( x=1^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to 1^{-}} f(x)= \lim_{x \to 1^{-} } 2x+1 =\)
3 At \( x=1^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to 1^{+}} f(x)= \lim_{x \to 1^{+}} = 3x =\)
3 At x=1, the value of the function is F=\(f(1) =\)
2 Since, limiting value and functional value are NOT equal, f(x) is NOT continuous at x=1.
What do you understand by the limit of a function? Let a function f(x) is defined by
\(f(x)=\begin{cases} 2-x^2 & \text {for } x < 2 \\ 3 & \text{for } x=2 \\ x-4 & \text{for } x > 2 \end{cases}\)
Verify that the limit of the function f(x) exists at x=2. Is the function f(x) continuous at x=2? If not why? State how can you make it continuous.
Given \(f(x)=\begin{cases} 2-x^2 & \text {for } x < 2 \\ 3 & \text{for } x=2 \\ x-4 & \text{for } x > 2 \end{cases}\)
0,0
Here At \( x=2^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to 2^{-}} f(x)= \lim_{x \to 2^{-} } 2-x^2 =\)
-2 At \( x=1^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to 2^{+}} f(x)= \lim_{x \to 2^{+}} = x-4=\)
-2
Since,LHL=RHL, the limit of the function f(x) exists at x=2
Next,
At x=2, the value of the function is F=\(f(2) =\)
3 The function f(x) is NOT continuous at x=2. Because, limiting value and functional value are NOT equal.
We can make the function f(x) continuous by re-defining it as below.
\(f(x)=\begin{cases} 2-x^2 & \text {for } x < 2 \\ -2 & \text{for } x=2 \\ x-4 & \text{for } x > 2 \end{cases}\)
A function f(x) is defined as under \(f(x)=\begin{cases} \frac{x^2-x-6}{x^2-2x-3} & \text {for } x \ne 3 \\ \frac{5}{3} & \text{for } x =3 \end{cases}\)
Prove that f(x) is discontinuous at x=3. Can the definition of f(x) for x=3 be modified so as to make it continuous there?
Given \(f(x)=\begin{cases} \frac{x^2-x-6}{x^2-2x-3} & \text {for } x \ne 3 \\ \frac{5}{3} & \text{for } x =3 \end{cases}\)
0,0
Here At \( x=3^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to 3^{-}} f(x)= \lim_{x \to 3^{-} } \frac{x^2-x-6}{x^2-2x-3}=\lim_{x \to 3^{-} }\frac{(x-3)(x+2)}{(x-3)(x+1)} =\lim_{x \to 3^{-} }\frac{x+2}{x+1}=\)
\(\frac{5}{4}\) At \( x=3^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to 3^{+}} f(x)= \lim_{x \to 3^{+}} \frac{x^2-x-6}{x^2-2x-3}=\lim_{x \to 3^{+} }\frac{(x-3)(x+2)}{(x-3)(x+1)} =\lim_{x \to 3^{+} }\frac{x+2}{x+1}=\)
\(\frac{5}{4}\)
At x=3, the value of the function is F=\(f(3) =\)
\(\frac{5}{3}\) The function f(x) is discontinuous at x=3. Because, limiting value and functional value are NOT equal.
We can make the function f(x) continuous by re-defining it as below.
\(f(x)=\begin{cases} \frac{x^2-x-6}{x^2-2x-3} & \text {for } x \ne 3 \\ \frac{5}{4} & \text{for } x =3 \end{cases}\)
A function f(x) is defined as follows
\(f(x)=\begin{cases} \frac{1}{2}+x & \text {for } 0 < x <\frac{1}{2} \\ \frac{1}{2} & \text{for } x =\frac{1}{2} \\ \frac{3}{2}-x & \text{for }
\frac{1}{2} < x < 1 \end{cases}\)
Show that f(x) has removable discontinuity at \(x=\frac{1}{2}\)
Given \(f(x)=\begin{cases} \frac{1}{2}+x & \text {for } 0 < x <\frac{1}{2} \\ \frac{1}{2} & \text{for } x =\frac{1}{2} \\ \frac{3}{2}-x & \text{for }
\frac{1}{2} < x < 1 \end{cases}\)
0,0
Here At \( x=\frac{1}{2}^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to \frac{1}{2}^{-}} f(x)= \lim_{x \to \frac{1}{2}^{-} } \frac{1}{2}+x=\)
1 At \( x=\frac{1}{2}^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to \frac{1}{2}^{+}} f(x)= \lim_{x \to \frac{1}{2}^{+}} \frac{3}{2}-x=\)
1
At \(x=\frac{1}{2}\), the value of the function is F=\(f(\frac{1}{2}) =\)
\(\frac{1}{2}\) The function f(x) is discontinuous at \(x=\frac{1}{2}\).
Since, LHL=RHL ≠f(x), the f(x) has removable discontinuity at \(x=\frac{1}{2}\)
A function f(x) is defined in (0,3) as follows
\(f(x)=\begin{cases} x^2 & \text {for } 0 < x <1 \\ x & \text{for } 1 \le x < 2 \\ \frac{1}{4}x^3 & \text{for }
2 \le x < 3 \end{cases}\)
Show that f(x) is continuous at x=1 and x=2
Given \(f(x)=\begin{cases} x^2 & \text {for } 0 < x <1 \\ x & \text{for } 1 \le x < 2 \\ \frac{1}{4}x^3 & \text{for }
2 \le x < 3 \end{cases}\)
0,0
test at x=1
Here At \( x=1^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to 1^{-}} f(x)= \lim_{x \to 1^{-} } x^2=\)
1 At \( x=1^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to 1^{+}} f(x)= \lim_{x \to 1^{+}} x=\)
1
At \(x=1\), the value of the function is F=\(f(1) =x=\)
1
Since, LHL=RHL=f(1), the function is continuous at x=1
test at x=2
Here At \( x=2^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to 2^{-}} f(x)= \lim_{x \to 2^{-} } x=\)
2 At \( x=2^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to 2^{+}} f(x)= \lim_{x \to 2^{+}} \frac{1}{4}x^3=\)
2
At \(x=2\), the value of the function is F=\(f(2) =\frac{1}{4}x^3=\)
2
Since, LHL=RHL=f(2), the function is continuous at x=2
A function f(x) is defined as follows
\(f(x)=\begin{cases} 3+2x & \text {for } -\frac{3}{2} \le x <0 \\ 3-2x & \text{for } 0 \le x < \frac{3}{2} \\ -3-2x & \text{for }
x \ge \frac{3}{2} \end{cases}\)
Show that f(x) is continuous at x=0 and discontinuous at \(x=\frac{3}{2}\)
Given \(f(x)=\begin{cases} 3+2x & \text {for } -\frac{3}{2} \le x <0 \\ 3-2x & \text{for } 0 \le x < \frac{3}{2} \\ -3-2x & \text{for }
x \ge \frac{3}{2} \end{cases}\)
0,0
test at x=0
Here At \( x=0^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to 0^{-}} f(x)= \lim_{x \to 0^{-} } 3+2x=\)
3 At \( x=0^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to 0^{+}} f(x)= \lim_{x \to 0^{+}} 3-2x=\)
3
At \(x=0\), the value of the function is F=\(f(0) =3-2x=\)
3
Since, LHL=RHL=f(0), the function is continuous at x=0
test at x=3/2
Here At \( x=\frac{3}{2}^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to \frac{3}{2}^{-}} f(x)= \lim_{x \to \frac{3}{2}^{-} } 3-2x=\)
0 At \( x=\frac{3}{2}^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to \frac{3}{2}^{+}} f(x)= \lim_{x \to \frac{3}{2}^{+}} -3-2x=\)
-6
At \(x=\frac{3}{2}\), the value of the function is F=\(f(\frac{3}{2}) =-3-2x=\)
-6
Since, LHL≠RHL=f(3/2), the function is NOT continuous at x=3/2
A function f(x) is defined as follows
\(f(x)=\begin{cases} 1 & \text {for } x >0 \\ 0 & \text{for } x=0 \\ -1 & \text{for }
x < 01\end{cases}\)
Show that f(x) isdiscontinuous at x=0.
Given \(f(x)=\begin{cases} 1 & \text {for } x >0 \\ 0 & \text{for } x=0 \\ -1 & \text{for }
x < 0\end{cases}\)
0,0
Here At \( x=0^{-}\), the left hand limit is LHL=\( \displaystyle \lim_{x \to 0^{-}} f(x)= \lim_{x \to 0^{-} } -1=\)
-1 At \( x=0^{+}\), the right hand limit is RHL=\( \displaystyle \lim_{x \to 0^{+}} f(x)= \lim_{x \to 0^{+}} 1=\)
1
At \(x=0\), the value of the function is F=\(f(0) =0=\)
0
Since, LHL≠RHL≠f(0), the function is NOT continuous at x=0
In the following, determine the value of the constant so that the given function is continuous at the point mentioned.
\(f(x)=\begin{cases} kx^2 & \text {for } x \le 2 \\ 3 & \text{for } x > 2\end{cases}\) at x=2
Given that \(f(x)=\begin{cases} \frac{x^2-9}{x-3} & \text {for } x \ne 3 \\ k & \text{for } x =3 \end{cases}\)
At x=3, we compute the following
The functional value is \(f(x)=k=\) k
The left hand limit is \( LHL=\displaystyle \lim_{x \to 3^-} f(x)= \lim_{x \to 3^-} \frac{x^2-9}{x-3}=\lim_{x \to 3^-} (x+3)=\) 6
The right hand limit is \(RHL= \displaystyle \lim_{x \to 3^+} f(x)= \lim_{x \to 3^+}\frac{x^2-9}{x-3}=\lim_{x \to 3^-} (x+3)=\) 6
Since,
Function is assumed continuous at x=3, thus we must have LHL=RHL=f(x)
or k=6
Let \(f(x)=\begin{cases} 2x & \text {for } x <2 \\ 2 & \text{for } x=2 \\ x^2 & \text{for }
x >2 \end{cases}\). Show that f(x) has removable discontinuity at x=2.
Let 𝑓(𝑥) be a function defined at all values in an open interval containing a Then we say that f(x) is continuous at a if
for a given number \(\epsilon > 0\), there exists a number \(\delta > 0\)such that |f(x)-f(a)|<\(\epsilon\) whenever |x-a|<\(\delta\)
OR
the function f(x) is continuous at x=a if the following three conditions holds
If one of the following condition occured, then the function f(x) will be discontinuous at x=a
LHL = RHL, BUT f(a) is NOT defined [Removable Discontinuity]
f(a)=LHL = RHL≠f(a)[Removable Discontinuity]
f(a)=LHL≠ RHL[Jump Discontinuity]
LHL≠ RHL=f(a)[Jump Discontinuity]
LHL= RHL=∞ or LHL= RHL=-∞[Infinite Discontinuity]
LHL=∞, RHL=-∞ or LHL=-∞, RHL=∞[Infinite Discontinuity]
LHL ,RHL ,f(a) are NOT equal [Discontinuity]
A function f(x) is defined as \(f(x)=\begin{cases} 1 & \text {for } x \ne 0 \\ 2 & \text{for } x =0 \end{cases}\). Find \(\displaystyle \lim_{x \to 0} f(x)\) if exists. Is the function continuous at x=0?
Given that \(
f(x)=
\begin{cases}
\frac{x^2-4}{x-2} & x \ne 2\\
4 & x =2
\end{cases}
\)
At x=2, we compute the following
The functional value is \(f(x)= \) 4
The left hand limit is \( LHL=\displaystyle \lim_{x \to 2^-} f(x)= \lim_{x \to 2^-} \frac{x^2-4}{x-2}=x+2=2+2=\) 4
The right hand limit is \(RHL= \displaystyle \lim_{x \to 2^+} f(x)= \lim_{x \to 2^+}\frac{x^2-4}{x-2}=x+2=2+2=\) 4
Since, LHL=RHL=f(x)
The function is continuous at x=2
0,0
f(x)
This completes the solution
Test the continuity of a function
\(f(x)=\begin{cases}
\frac{1}{x} & x < -1 \\
\frac{x-1}{2} & -1 \le x < 1 \\
\sqrt{x} & x \ge 1 \\
\end{cases}
\)
at x=-1.
No comments:
Post a Comment