Courses

Saturday, June 29, 2024

De Moivre's theorem and its application




De-Moivre’s theorem







Let \( z=r \cos \theta +i\sin \theta \) be a complex number then \( z^n =r^n (\cos n\theta +i\sin n\theta )\) where n is a positive integer.
Proof

  1. Case 1: n=1
    Then
    \( z =r (\cos \theta +i\sin \theta )\)
    or \( z^1 =r^1 (\cos 1.\theta +i\sin 1.\theta )\)
    So,
    or \( z^n =r^n (\cos n\theta +i\sin n\theta )\) when n=1
  2. Case 2: n=2
    \( z^2 =z.z\)
    or \( z^2 = r (\cos \theta +i\sin \theta ) \times r (\cos \theta +i\sin \theta ) \)
    or \( z^2 = r^2 (\cos \theta +i\sin \theta )(\cos \theta +i\sin \theta )\)
    or \( z^2 = r^2 [\cos \theta (\cos \theta +i\sin \theta )+i\sin \theta (\cos \theta +i\sin \theta )\)
    or \( z^2 = r^2 [\cos \theta \cos \theta +i\cos \theta\sin \theta +i\sin \theta\cos \theta -\cos \theta\sin \theta ]\)
    or \( z^2 = r^2 [(\cos \theta \cos \theta-\sin \theta \sin \theta ) +i(\cos \theta\sin \theta +\sin \theta\cos \theta) ]\)
    or \( z^2 = r^2 [\cos (\theta +\theta) +i \sin (\theta+ \theta)]\)
    or \( z^2 = r^2 [\cos 2\theta +i \sin 2\theta]\)
    So,
    or \( z^n =r^n (\cos n\theta +i\sin n\theta )\) when n=2
  3. Case 3: We assume the same formula is true for n = k, so we have
    \( (\cos\theta + i\sin\theta)^k = r^k(\cos(k\theta) + i\sin(k\theta))\)
    So,
    or \( z^n =r^n (\cos n\theta +i\sin n\theta )\) when n=k
  4. Case 4: Now, we prove for n = k + 1,
    \( [r(\cos\theta + i\sin\theta)]^{k + 1} = r^k(\cos\theta + i\sin\theta)^k r (\cos\theta + i\sin\theta)\)
    or \( [r(\cos\theta + i\sin\theta)]^{k + 1} = r^k(\cos(k\theta) + i\sin(k\theta)) r(\cos\theta + i\sin\theta)\)
    or \( [r(\cos\theta + i\sin\theta)]^{k + 1} = r^{k+1}[(\cos(k\theta) \cos\theta-\sin(k\theta)\sin\theta )+i (\cos\theta\sin(k\theta) + \sin\theta\cos(k\theta))]\)
    or \( [r(\cos\theta + i\sin\theta)]^{k + 1} =r^{k+1}[\cos(k\theta+\theta)+i \sin(k\theta+\theta )]\)
    or \( [r(\cos\theta + i\sin\theta)]^{k + 1} =r^{k+1}[\cos(k+1)\theta+i \sin(k+1)\theta]\)
    So,
    or \( z^n =r^n (\cos n\theta +i\sin n\theta )\) when n=k+1
  5. Using case 1-case 4, for any number \( n \in Z\) , we have
    \( [r(\cos\theta + i\sin\theta)]^n =r^n[\cos(n\theta)+i \sin(n\theta)]\)



Exercise 1

  1. Evaluate
    1. \( [2 (\cos 15^o+i \sin 15^o)]^6\)

      Answer 👉 Click Here

    2. \( [3 (\cos 120^o+i \sin 120^o)]^3\)

      Answer 👉 Click Here

    3. \( [ (\cos 18^o+i \sin 18^o)]^5\)

      Answer 👉 Click Here

    4. \( [ (\cos 9^o+i \sin 9^o)]^{40}\)

      Answer 👉 Click Here

    5. \( (1+i)^6\)
      Solution

      Answer 👉 Click Here

    6. \( (1+i)^{20}\)

      Answer 👉 Click Here

    7. \( (-1+i)^{14}\)

      Answer 👉 Click Here

    8. \( \left ( \frac{1}{2} , \frac{\sqrt{3}}{2} i \right )^7 \)

      Answer 👉 Click Here

    9. \( (1-\sqrt{3}i)^6\)

      Answer 👉 Click Here

    10. \( i^2\)

      Answer 👉 Click Here

  2. Show that \(z^3=1\) where \( z=\left ( -\frac{1}{2} , \frac{\sqrt{3}}{2} i \right ) \)

    Answer 👉 Click Here




nth root of Complex number







If \( Z=r(\cos \theta +i\sin \theta )\) be a complex number then the nth root of z is
\( \sqrt[n]{Z}=\sqrt[n]{r} \left ( \cos \frac{(\theta +2k \pi )}{n} +i\sin \frac{(\theta +2k\pi )}{n} \right ) \)
Proof
Given that Z is a complex number. Also let, nth root of Z is W such that \( W=R(\cos \phi +i\sin \phi )\)
Now we have
\( \sqrt[n]{Z}=W\)
or \( W^n=Z\)
or \( [R(\cos \phi +i\sin \phi )]^n=r(\cos \theta +i\sin \theta )\)
or \( R^n(\cos (n\phi) +i\sin (n\phi) )=r(\cos \theta +i\sin \theta )\)
Equating real and Imaginary parts, we get
\( R^n=r\) and \( \cos (n\phi)= \cos \theta\) and \( \sin (n\phi) =\sin \theta \)
or \( R=\sqrt[n]{r}\) and \( n\phi= \theta +2k \pi \)
or \( R=\sqrt[n]{r}\) and \( \phi= \frac{(\theta +2k\pi )}{n}\)
Thus, nth root of \( Z=r(\cos \theta +i\sin \theta )\) is
\( W=R(\cos \phi +i\sin \phi )\)
or \( W=\sqrt[n]{r} \left ( \cos \frac{(\theta +2k \pi )}{n} +i\sin \frac{(\theta +2k\pi )}{n} \right ) \)




Exercise 2

  1. Find the square roots of
    1. \(i\)

      Answer 👉 Click Here

    2. \(4+4\sqrt{3} i\)

      Answer 👉 Click Here

    3. \(-1+\sqrt{3} i \)

      Answer 👉 Click Here

    4. \(-2-2\sqrt{3} i \)

      Answer 👉 Click Here

    5. \(2i\)

      Answer 👉 Click Here

    6. \(-i \)

      Answer 👉 Click Here

  2. Find the cube roots of
    1. \(8+6i\)

      Answer 👉 Click Here

    2. \(-1\)

      Answer 👉 Click Here

    3. \(8i\)

      Answer 👉 Click Here

  3. Solve the following
    1. \(z^4=1\)

      Answer 👉 Click Here

    2. \(z^6=1\)

      Answer 👉 Click Here

    3. \(z^4+1=0\)

      Answer 👉 Click Here

    4. \(z^3=8i\)

      Answer 👉 Click Here

  4. Find the 4th roots of \( ( -\frac{1}{2},\frac{\sqrt{3}}{2}i ) \)

    Answer 👉 Click Here

  5. Find the 10th roots of 1
    The figure shows 10th root of 1.
    Drag the value of k=0,1,2,...,9
  6. In electrical engineering, a circuit has an impedance represented by the complex number. Z=8+6i ohms. The engineers need to design a component with an impedance that, when cubed, matches the original impedance.
    1. Calculate the magnitude ∣Z∣ and angle θ of the original impedance.
    2. Determine the cube root of the original impedance in polar form.
    3. Design a new component with an impedance Zn such that (Zn)^3 matches the original impedance.
    4. Express the new impedance in rectangular form and calculate its magnitude and angle.
  7. If \( \bar{z}\) be the conjugate of a complex number \(z\), prove that \(Arg(\bar{z})=2 \pi- Arg(z)\)
  8. If \(z=\cos \theta +i \sin \theta\), prove that \(z^n-\frac{1}{z^n} = 2 \sin n \theta i\)



Properties of cube root of unity




Exponential Form

Show/Hide 👉 Click Here




Thursday, June 20, 2024

Tangent and Normal to a Circle




Introduction to circle

Show/Hide 👉 Click Here




Equation of circle

Show/Hide 👉 Click Here




Tangent to a circle

Show/Hide 👉 Click Here




Condition to be a Tangent to a circle

Show/Hide 👉 Click Here




Equation of tangent line to the circle

Show/Hide 👉 Click Here




Equation of normal line to the circle

Show/Hide 👉 Click Here




Length of the tangent from external point

Show/Hide 👉 Click Here




Exercise 1

  1. Find the equation of tangent and normal to given circle at given point
    1. x2 + y2 = 25 at (3, -4)

      Show/Hide 👉 Click Here

    2. \( x^2+y^2=4 \) at \( (1,\sqrt{3} ) \)

      Show/Hide 👉 Click Here

    3. \(x^² + y^² =4 \) at \( (2 \cos \theta, 2 \sin \theta) \)

      Show/Hide 👉 Click Here

    4. \( x^2+y^2=8 \) at \( (2,2) \)

      Show/Hide 👉 Click Here

    5. \( x^2+y^2=36 \) at \( (-6,0) \)

      Show/Hide 👉 Click Here

    6. \(x^² + y^² + 2 x + 4 y —20 = 0 \) at (3,1)

      Show/Hide 👉 Click Here

    7. \(x^² + y^² -6x-8y-4 =0\) at (8,6)

      Show/Hide 👉 Click Here

    8. \(x^² + y^² -3x+10y-15=0 \) at (4,-11)

      Show/Hide 👉 Click Here

    9. \(x^2+y^2-8x-2y+12=0\) at (x, -1)

      Show/Hide 👉 Click Here

  2. Find the point where the tangent to the circle \(x^2+y^2=225\) at (9, 12) crosses the x-axis. Ans: (25,0)

    Show/Hide 👉 Click Here

  3. Find the point where the tangent to the circle \(x^2+y^2=25\) at (2, 4) crosses the x-axis. Ans: (10,0)

    Show/Hide 👉 Click Here

  4. Find the following
    1. Find the equation of tangent and normal to \(x^² + y^² =40 \) at the points whose (i) absciassa is 2 (ii) ordinate is -6
    2. Show/Hide 👉 Click Here

    3. Find the equation of tangent to the circle \(2x^² + 2y^² =9 \) which makes angle 45 degree with x-axis

      Show/Hide 👉 Click Here

    4. Find the equation of normal to the circle \(2x^² + 2y^² =9 \) which makes angle 45 degree with x-axis

      Show/Hide 👉 Click Here

  5. Find the following equation of tangent to the circle
    1. \(x^2+y^2=4\) which are parallel to \(3x+4y-5=0\)

      Show/Hide 👉 Click Here

    2. \(x^2+y^2=5\) which are parallel to \(x+2y=0\)

      Show/Hide 👉 Click Here

    3. \(x^2+y^2-6x+4y=12\) which are parallel to \(4x+3y+5=0\)

      Show/Hide 👉 Click Here

    4. \(x^2+y^2-2x-4y-4=0\) which are parallel to \(3x-4y=1\)

      Show/Hide 👉 Click Here

  6. Show that
    1. tangent to the circle \(x^2+y^2=100\) at the points (6,8) and (8,-6) are perpendicular to each other

      Show/Hide 👉 Click Here

    2. tangent to the circle \(x^2+y^2+4x+8y+2=0\) at the points (1,-1) and (-5,-7) are parallel to each other

      Show/Hide 👉 Click Here

  7. Find the equation of the circle whose center is (h,k) and which passes through the origin and prove that the equation of the tangent at the origin is \(hx+ky=0\)

    Show/Hide 👉 Click Here




Exercise 2

  1. Show that the line \(3x-4y=25\) and the circle \(x^2+y^2=25\) intersect at two coincide points

    Show/Hide 👉 Click Here

  2. Prove that the line \(5x+12y+78=0\) is tangent to the circle \(x^2+y^2=36\)

    Show/Hide 👉 Click Here

  3. Prove that the tangent to the circle \(x^2+y^2=5\) at the point (1,-2) also touches the circle \(x^2+y^2-8x+6y+20=0\) and find the point of contact.

    Show/Hide 👉 Click Here

  4. Prove that the line \(y=x+a\sqrt{2}\) touches the circle \(x^2+y^2=a^2\) and find the point of contact.

    Show/Hide 👉 Click Here

  5. Find the value of k so that
    1. the line \(4x+3y+k=0\) may touches the circle \(x^2+y^2-4x+10y+4=0\)

      Show/Hide 👉 Click Here

    2. the line \(2x-y+4k=0\) touches the circle \(x^2+y^2-2x-2y-3=0\)

      Show/Hide 👉 Click Here

  6. Find the condition that
    1. the line \(px+qy=r\) is tangent to the circle \(x^2+y^2=a^2\)

      Show/Hide 👉 Click Here

    2. the line \(lx+my+n=0\) is tangent to the circle \(x^2+y^2+2gx+2fy+c=0\)

      Show/Hide 👉 Click Here

    3. the line \(lx+my+n=0\) is normal to the circle \(x^2+y^2+2gx+2fy+c=0\)

      Show/Hide 👉 Click Here

    4. the circle \(x^2+y^2+2gx+2fy+c=0\) touches the (i) x-axis (ii) y-axis

      Show/Hide 👉 Click Here

  7. If the line \(lx+my=1\) touches the circle \(x^2+y^2=a^2\), prove that the point \((l,m)\) lies on a circle whose radius is \(\frac{1}{a}\)

    Show/Hide 👉 Click Here

  8. Do the following
    1. Find the condition for the two circles \(x^2+y^2=a^2\) and \( (x-c)^2+y^2=b^2\) to touch (i) externally and (ii) internally

      Show/Hide 👉 Click Here

    2. Prove that the two circles \(x^2+y^2+2ax+c^2=0\) and \(x^2+y^2+2by+c^2=0\) touch if \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}\)

      Show/Hide 👉 Click Here




Exercise 3

  1. Find the equation to the pair of tangents drawn from the origin to the circle \(x^2+y^2-4x-4y+7=0\)

    Show/Hide 👉 Click Here

  2. Find the equation of tangents drawn from the point (11,3) to the circle \(x^2+y^2=65\). Also find the angles between the two tangents.

    Show/Hide 👉 Click Here

  3. Find the equation of tangents drawn from the origin to the circle \(x^2+y^2+10x+10y+40=0\)

    Show/Hide 👉 Click Here




Exercise 4

  1. Determine the length of tangents to the circles
    1. \(x^2+y^2=25\) from (3,5)

      Show/Hide 👉 Click Here

    2. \(x^2+y^2+4x+6y-19=0\) from (6,4)

      Show/Hide 👉 Click Here

  2. Determine the value of k so that the length of the tangent from (5,4) to the circle \(x^2+y^2+2ky=0\) is 5.

    Show/Hide 👉 Click Here

  3. Show that the length of the tangent drawn from any point on the circle \(x^2+y^2+2gx+2fy+c=0\) to the circle \(x^2+y^2+2gx+2fy+c_1=0\) is \(\sqrt{c_1-c}\)

    Show/Hide 👉 Click Here