Courses

Wednesday, April 24, 2024

Inscribed angle theorem

In geometry, a central angle is an angle whose vertex is at the center of a circle. A central angle is formed by two radii (plural of radius) of a circle. The central angle is equal to the measure of the intercepted arc. An intercepted arc is a portion of the circumference of a circle encased by two line segments meeting at the center of the circle


Inscribed angle theorem

An inscribed angle in a circle is formed by two chords that have a common end point on the circle. This common end point is the vertex of the angle. In the figure below, circle with center O has the inscribed angle ∡ABC. The other end points than the vertex, A and C define the intercepted arc AC of the circle.



Theorem

The measure of an inscribed angle is half the measure of the intercepted arc.
Proof
Given Consider a circle C with center O , we consider an inscribed angle at B by the arc AC
To Prove
∡B= \(\frac{1}{2} \measuredangle AOC\)
Construction
Join the vertices A and C with center O. Also draw a line through B and O .
SN Statement Reasons
1 ∆BCO is Isosceles CO=BO
2 y=2x Triangle exteriar angle theorem
3 b=2a Triangle exteriar angle theorem
4 y+b=2(a+x)
a+x= \( \frac{1}{2}(y+b)\)
∡B= \(\frac{1}{2} \measuredangle AOC\)
Adding 2 and 3



Symbolic Notation

Due to the theorem given above, it is seen that, the measure of arc AC has equal influence to the measure of its central angle ∡AOC. So it is also written as
\( \overset{⏜}{AC} \cong \measuredangle AOC \) or \( \overset{⏜}{AC} \equiv \measuredangle AOC \)
Similarly, the measure of chord AC has equal influence to the measure of its central angle ∡AOC. So it is also written as
\( \overline{AC} \cong \measuredangle AOC \) or \( \overline{AC} \equiv \measuredangle AOC \)
Similarly, the measure of chord AC has equal influence to the measure of its arc AC. So it is also written as
\( \overline{AC} \cong \overset{⏜}{AC} \) or \( \overline{AC} \equiv \overset{⏜}{AC} \)

Friday, April 19, 2024

Parts of Two Sets




Parts of Two sets

Below is a Venn diagram involving two sets A and B

Here are four disjoint parts of the Venn-diagram. These four parts are

  • \(A_o\) or \((A-B)\) [red color]
  • \(B_o\) or \((B-A)\)[green Color]
  • \(A \cap B\) [gray Color]
  • \((AUB)'\) or \( (\overline{A \cup B})\) or \((AUB)^c\) [yellow color]



Using these four disjoint parts, all together 16 different set notations can be formed. They are

  1. 1 set notation can be formed taking 0 parts out of 4 disjoint parts
  2. four different set notations can be formed taking 1 parts out of 4 disjoint parts
  3. six different set notations can be formed taking 2 parts out of 4 disjoint parts
  4. four different set notations can be formed taking 3 parts out of 4 disjoint parts
  5. 1 set notation can be formed taking 4 parts out of 4 disjoint parts
Possible CombinationsPossible number of sets Set Notations
Set with zero parts1 \( \phi \)
Set with one parts4 \(A_0,B_0,A \cap B, \overline{ (A \cup B)} \)
Set with two parts6 \( A,B,\overline{A},\overline{B},A \triangle B, \overline{(A \triangle B)}\)
Set with three parts4 \( \overline{(A-B)}, \overline{(B-A)},\overline{(A \cap B)}, A \cup B \)
Set with four parts1 \( U \)

माथिको चारवटा अलगिएका समुहहरुलाई प्रयोग गरेर जम्मा 16 वटा फरक फरक समुहहरु बनाउन सकिन्छ । जसमा

  1. 0 वटा भागलाई प्रयोग गरेर १ वटा समुह बनाउन सकिन्छ।
  2. १ वटा भागलाई प्रयोग गरेर ४ वटा समुह बनाउन सकिन्छ।
  3. २ वटा भागलाई प्रयोग गरेर ६ वटा समुह बनाउन सकिन्छ।
  4. ३ वटा भागलाई प्रयोग गरेर ४ वटा समुह बनाउन सकिन्छ।
  5. ४ वटा भागलाई प्रयोग गरेर १ वटा समुह बनाउन सकिन्छ।

These 16 different set notation are given below.




  1. Part 1: \(\phi\)

    Set Notation:\(\phi\)
    This part is formed taking 0 parts out of the four parts \(A_o,B_o,(A\cap B),(\overline{A \cup B})\)
    This part is also known as empty set.
    It contains no cardinality (or elements) of the sets A or B or U.
    समुह संकेत :\(\phi\)
    यो समुह बन्न को लागी दिएका चारवटा भागहरु \(A_o,B_o,(A\cap B),(\overline{A \cup B})\) मध्ये 0 वटा भाग को प्रयोग भएको छ।
    यसलाई खाली समुह पनि भनिन्छ ।
    यस समुहमा समुह A वा B वा U बाट कुनै पनि सदस्यहरु पर्दैनन् ।

  2. Part 2: \(A_o\) or \(A-B \)

    Set Notation:\(A_o\) or \((A-B) \)
    This part is formed taking 1 part out of the four parts \(A_o,B_o,(A\cap B),(\overline{A \cup B})\)
    This part is also known as A difference B or only A
    It contains the cardinality (or elements) that belong to set A only, but not in B
    समुह संकेत :\(A_o\) or \(A-B \)
    यो समुह बन्न को लागी दिएका चारवटा भागहरु \(A_o,B_o,(A\cap B),(\overline{A \cup B})\) मध्ये १ वटा भाग को प्रयोग भएको छ।
    यसलाई A र B को फरक समुह भनिन्छ ।
    यसमा समुह A मा भएका तर B मा नभएका सदस्यहरु मात्र पर्दछन।

  3. Part 3: B-A

    Set Notation:B-A (or B0)
    This part is formed taking 1 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as B difference A.
    It contains the cardinality (or elements) that belong to set B only, but not in A
    समुह संकेत :B-A (or B0)
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये १ वटा भाग को प्रयोग भएको छ।
    यसलाई B र A को फरक समुह भनिन्छ ।
    यसमा समुह B मा भएका तर A मा नभएका सदस्यहरु पर्दछन।

  4. Part 4: A∩B

    Set Notation:A∩B
    This part is formed taking 1 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as A intersection B.
    It contains the cardinality (or elements) that belong to sets A and B both
    समुह संकेत :A∩B
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये १ वटा भाग को प्रयोग भएको छ।
    यसलाई A र B को प्रतिच्छेदन समुह भनिन्छ ।
    यसमा समुह A र B दुवैमा पर्ने साझा सदस्यहरु पर्दछन।

  5. Part 5: (AUB)'

    Set Notation: (AUB)'
    This part is formed taking 1 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as complement of A union B.
    It contains the cardinality (or elements) that belong to sets Neither A nor B nor both
    समुह संकेत : (AUB)'
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये १ वटा भाग को प्रयोग भएको छ।
    यसलाई A र B को संयोजन को पुरक समुह भनिन्छ ।
    यसमा समुह A वा B दुवैमा नपर्ने सदस्यहरु पर्दछन।

  6. Part 6: A

    Set Notation: A
    This part is formed taking 2 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as A .
    It contains the cardinality (or elements) that belong to sets A
    समुह संकेत :A
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये २ वटा भाग को प्रयोग भएको छ।
    यसलाई A समुह भनिन्छ ।
    यसमा समुह Aमा पर्ने सबै सदस्यहरु पर्दछन।

  7. Part 7: B

    Set Notation:B
    This part is formed taking 2 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as B .
    It contains the cardinality (or elements) that belong to sets B
    समुह संकेत :B
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये २ वटा भाग को प्रयोग भएको छ।
    यसलाई B समुह भनिन्छ ।
    यसमा समुह B मा पर्ने सबै सदस्यहरु पर्दछन।

  8. Part 8: A'

    Set Notation:A'
    This part is formed taking 2 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as complement of A .
    It contains the cardinality (or elements) that does NOT belong to set A
    समुह संकेत :A'
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये २ वटा भाग को प्रयोग भएको छ।
    यसलाई A को पुरक समुह भनिन्छ ।
    यसमा समुह A मा नपर्ने सबै सदस्यहरु पर्दछन।

  9. Part 9: B'

    Set Notation:B'
    This part is formed taking 2 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as complement of B .
    It contains the cardinality (or elements) that does NOT belong to set B
    समुह संकेत :B'
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये २ वटा भाग को प्रयोग भएको छ।
    यसलाई B को पुरक समुह भनिन्छ ।
    यसमा समुह B मा नपर्ने सबै सदस्यहरु पर्दछन।

  10. Part 10: A∆B

    Set Notation:A∆B
    This part is formed taking 2 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as union of (A-B) and (B-A) .
    It contains the cardinality (or elements) that belong to only one set
    समुह संकेत :A∆B
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये २ वटा भाग को प्रयोग भएको छ।
    यसलाई (A-B) र (B-A) को संयोजन समुह भनिन्छ ।
    यसमा समुह (A-B) वा (B-A) मा पर्ने सबै सदस्यहरु पर्दछन।

  11. Part 11: (A∆B)'

    Set Notation: (A∆B)'
    This part is formed taking 2 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as complement of the union of (A-B) and (B-A) .
    It contains the cardinality (or elements) that does NOT belong to only one set
    समुह संकेत : (A∆B)'
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये २ वटा भाग को प्रयोग भएको छ।
    यसलाई (A-B) र (B-A) को संयोजनको पुरक समुह भनिन्छ ।
    यसमा समुह (A-B) र (B-A) कुनैमा पनि नपर्ने सदस्यहरु पर्दछन।

  12. Part 12: AUB

    Set Notation: AUB
    This part is formed taking 3 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as union of A and B.
    It contains the cardinality (or elements) that belongs to either A or B or Both
    समुह संकेत : AUB
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये ३ वटा भाग को प्रयोग भएको छ।
    यसलाई A र B को संयोजन समुह भनिन्छ ।
    यसमा समुह A वा B मा पर्ने सदस्यहरु पर्दछन।

  13. Part 13: \(A_0'\)

    Set Notation: (A0)'
    This part is formed taking 3 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as complement of A difference B.
    It contains the cardinality (or elements) that does Not belong to A only
    समुह संकेत : (A0)'
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये ३ वटा भाग को प्रयोग भएको छ।
    यसलाई A र B को फरक को पुरक समुह भनिन्छ ।
    यसमा समुह A र B को फरकमा नपर्ने सबै सदस्यहरु पर्दछन।

  14. Part 14: \(B_0'\)

    Set Notation: (B0)'
    This part is formed taking 3 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as complement of B difference A.
    It contains the cardinality (or elements) that does Not belong to B only
    समुह संकेत : (B0)'
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये ३ वटा भाग को प्रयोग भएको छ।
    यसलाई B र A को फरक को पुरक समुह भनिन्छ ।
    यसमा समुह B र A को फरकमा नपर्ने सबै सदस्यहरु पर्दछन।

  15. Part 15: (A∩B)'

    Set Notation: (A∩B)'
    This part is formed taking 3 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as complement of A intersection B.
    It contains the cardinality (or elements) that does Not belong to both A and B
    समुह संकेत : (A∩B)'
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये ३ वटा भाग को प्रयोग भएको छ।
    यसलाई B र A को प्रतिच्छेदन को पुरक समुह भनिन्छ ।
    यसमा समुह A र B को प्रतिच्छेदनमा नपर्ने सबै सदस्यहरु पर्दछन।

  16. Part 16: U

    Set Notation:U
    This part is formed taking 4 parts out of the four parts A0, B0,A∩B and (AUB)'
    This part is also known as full (Universal) set.
    It contains all cardinality (or elements) of the sets A or B or U.
    समुह संकेत :U
    यो समुह बन्न को लागी दिएका चारवटा भागहरु A0, B0,A∩B र (AUB)'मध्ये ४ वटा भाग को प्रयोग भएको छ।
    यसलाई सर्वव्यापक समुह भनिन्छ ।
    यसमा समुह A वा B वा U भएका सबै सदस्यहरु पर्दछन।

Operation on Sets







Set Operation

In real number system, we can do four fundamental operation to form new number by combining or manipulating one or more existing numbers. For example, given two numbers \(2\) and \(3\) , we can use

  1. \(+\) to form a new number \(5\) by \(2+3\)
  2. \(\times\) to form a new number \(6\) by \(2 \times 3\)
  3. we can do Set operation to form new Set by combining or manipulating one or more existing Sets.
  4. Set operation helps to combine two or more sets together to form a new set.
  5. The common example of set operations are: Union, Intersection, Difference, and Complement



Union of Sets

Readings 👉 Click Here




Intersection of Sets

Readings 👉 Click Here




Difference of Sets

Readings 👉 Click Here




Complement of Set

Readings 👉 Click Here