- Test the continuity of a function f(x)=x2+1 at x=0
- Test the continuity of a function \( f(x)= \begin{cases} \frac{|x|}{x} & x \ne 2\\ x & x =2 \end{cases} \) at x=2.
- Test the continuity of a function \( f(x)= \begin{cases} 4x-3 & x < 2\\ (x-3)^2 & x ≥ 2 \end{cases} \) at x=2.
- Test the continuity of a function \( f(x)= \begin{cases} \frac{x^2-4}{x-2} & x \ne 2\\ 4 & x =2 \end{cases} \) at x=2.
- Test the continuity of a function \(f(x)=\begin{cases} \frac{1}{x} & x < -1 \\ \frac{x-1}{2} & -1 \le x < 1 \\ \sqrt{x} & x \ge 1 \\ \end{cases} \) at x=-1.
- Test the continuity of a function \( f(x)=\begin{cases} x-2 & x < 1 \\ \sqrt{x} & x \ge 1 \\ \end{cases} \) at x=-1 and at x=1.
- For what value of k would make the function continuous in each case? Explain how you found your value.
-
\(
f(x)=
\begin{cases}
\frac{x^2-9}{x+3} & x\ne -3 \\
k & x=-3
\end{cases}
\)
at x=-3
-
\(
f(x)=
\begin{cases}
\frac{\sin (5\pi x)-1}{2x-1} & x\ne \frac{1}{2} \\
k & x= \frac{1}{2}
\end{cases}
\)
at \( x=\frac{1}{2}\)
-
\(
f(x)=
\begin{cases}
\frac{e^x-1}{x} & x\ne 0 \\
k & x=0
\end{cases}
\)
at x=0
-
\(
f(x)=
\begin{cases}
\frac{x^2-9}{x+3} & x\ne -3 \\
k & x=-3
\end{cases}
\)
at x=-3
- Evaluate \( \displaystyle \lim_{x \to 4} \frac{(x-3)}{(4-x)(x+3)}\)
Solution
Method 2
If we substitute 𝑥=4 in the function \( \frac{(x-3)}{(4-x)(x+3)}\) then we get \(\frac{1}{0}\), so we do as follows.(-∞,-3) (-3,3) (3,4) (4,∞) (x-3) - - + + (4-x) + + + - (x+3) - + + + Result + -
Contunuity of a function [Extra Exercise]
Pages
SEARCH
LATEST
3-latest-65px
SECCIONS
- Continuity (3)
- Grade 11 (27)
- ICTMath (1)
- Limit (9)
- Mathematica (5)
- Mathematics (6)
- Projective Geometry (4)
- Quaadratic Equation (1)
- ReadingsinICT (10)
- SEE (2)
- Set (3)
- Thesis (5)
- Training (8)
No comments:
Post a Comment