Contunuity of a function [Extra Exercise]


  1. Test the continuity of a function f(x)=x2+1 at x=0

    Solution 👉 Click Here

  2. Test the continuity of a function \( f(x)= \begin{cases} \frac{|x|}{x} & x \ne 2\\ x & x =2 \end{cases} \) at x=2.

    Solution 👉 Click Here

  3. Test the continuity of a function \( f(x)= \begin{cases} 4x-3 & x < 2\\ (x-3)^2 & x ≥ 2 \end{cases} \) at x=2.

    Solution 👉 Click Here

  4. Test the continuity of a function \( f(x)= \begin{cases} \frac{x^2-4}{x-2} & x \ne 2\\ 4 & x =2 \end{cases} \) at x=2.

    Solution 👉 Click Here

  5. Test the continuity of a function \(f(x)=\begin{cases} \frac{1}{x} & x < -1 \\ \frac{x-1}{2} & -1 \le x < 1 \\ \sqrt{x} & x \ge 1 \\ \end{cases} \) at x=-1.

    Solution 👉 Click Here

  6. Test the continuity of a function \( f(x)=\begin{cases} x-2 & x < 1 \\ \sqrt{x} & x \ge 1 \\ \end{cases} \) at x=-1 and at x=1.

    Solution 👉 Click Here

  7. For what value of k would make the function continuous in each case? Explain how you found your value.
    • \( f(x)= \begin{cases} \frac{x^2-9}{x+3} & x\ne -3 \\ k & x=-3 \end{cases} \) at x=-3

      Solution 👉 Click Here

    • \( f(x)= \begin{cases} \frac{\sin (5\pi x)-1}{2x-1} & x\ne \frac{1}{2} \\ k & x= \frac{1}{2} \end{cases} \) at \( x=\frac{1}{2}\)

      Solution 👉 Click Here

    • \( f(x)= \begin{cases} \frac{e^x-1}{x} & x\ne 0 \\ k & x=0 \end{cases} \) at x=0

      Solution 👉 Click Here

  8. Evaluate \( \displaystyle \lim_{x \to 4} \frac{(x-3)}{(4-x)(x+3)}\)
    Solution

    Solution 👉 Click Here

    Method 2

    If we substitute 𝑥=4 in the function \( \frac{(x-3)}{(4-x)(x+3)}\) then we get \(\frac{1}{0}\), so we do as follows.
    (-∞,-3) (-3,3) (3,4) (4,∞)
    (x-3) - - + +
    (4-x) + + + -
    (x+3) - + + +
    Result + -
    So, LHS=+∞, and RHS=-∞, therefor limit does NOT exist.

No comments:

Post a Comment