- Define the continuity of a function at a point. Give with reason, an example of a continuouss function at a point. Is the function \(f(x)=\frac{1}{1-x}\) continuous at the point x=1?
- When a function f(x) is said to be continuous at a point x=a? Discuss the continuity of \(f(x)=\begin{cases} x^2+2 & \text {for } x \le 5 \\ 3x+12 & \text{for } x > 5 \end{cases}\) at x=5
- At what point is the function \(f(x)=\frac{x+1}{(x-2)(x-3)}\) (i) discontinuous (ii) continuous ?
- Doiscuss the continuity of the function f(x) at the point x=0.
\(f(x)=\begin{cases} x & \text {for } x > 0 \\ 1 & \text{for } x=0 \\ -x & \text{for } x < 0 \end{cases}\) - A function f(x) is defind as follows. \(f(x)=\begin{cases} 2x+1 & \text {for } x < 1 \\ 2 & \text{for } x=1 \\ 3x & \text{for } x > 0 \end{cases}\)
Calculate the left hand limit and right hand limit of f(x) at x=1. Is the function continuous at x=1? - What do you understand by the limit of a function? Let a function f(x) is defined by
\(f(x)=\begin{cases} 2-x^2 & \text {for } x < 2 \\ 3 & \text{for } x=2 \\ x-4 & \text{for } x > 2 \end{cases}\)
Verify that the limit of the function f(x) exists at x=2. Is the function f(x) continuous at x=2? If not why? State how can you make it continuous. - A function f(x) is defined as under \(f(x)=\begin{cases} \frac{x^2-x-6}{x^2-2x-3} & \text {for } x \ne 3 \\ \frac{5}{3} & \text{for } x =3 \end{cases}\)
Prove that f(x) is discontinuous at x=3. Can the definition of f(x) for x=3 be modified so as to make it continuous there?
- A function f(x) is defined as follows
\(f(x)=\begin{cases} \frac{1}{2}+x & \text {for } 0 < x <\frac{1}{2} \\ \frac{1}{2} & \text{for } x =\frac{1}{2} \\ \frac{3}{2}-x & \text{for } \frac{1}{2} < x < 1 \end{cases}\)
Show that f(x) has removable discontinuity at \(x=\frac{1}{2}\) - A function f(x) is defined in (0,3) as follows
\(f(x)=\begin{cases} x^2 & \text {for } 0 < x <1 \\ x & \text{for } 1 \le x < 2 \\ \frac{1}{4}x^3 & \text{for } 2 \le x < 3 \end{cases}\)
Show that f(x) is continuous at x=1 and x=2 - A function f(x) is defined as follows
\(f(x)=\begin{cases} 3+2x & \text {for } -\frac{3}{2} \le x <0 \\ 3-2x & \text{for } 0 \le x < \frac{3}{2} \\ -3-2x & \text{for } x \ge \frac{3}{2} \end{cases}\)
Show that f(x) is continuous at x=0 and discontinuous at \(x=\frac{3}{2}\) - A function f(x) is defined as follows
\(f(x)=\begin{cases} 1 & \text {for } x >0 \\ 0 & \text{for } x=0 \\ -1 & \text{for } x < 01\end{cases}\)
Show that f(x) isdiscontinuous at x=0.
- A function f(x) is defined as follows
- In the following, determine the value of the constant so that the given function is continuous at the point mentioned.
- \(f(x)=\begin{cases} kx^2 & \text {for } x \le 2 \\ 3 & \text{for } x > 2\end{cases}\) at x=2
- \(f(x)=\begin{cases}ax+5 & \text {for } x \le 2 \\ x-1 & \text{for } x > 2\end{cases}\) at x=2
- \(f(x)=\begin{cases} 2px+3 & \text {for } x <1 \\ 1-px^2& \text{for } x \ge 1\end{cases}\) at x=1
- \(f(x)=\begin{cases} \frac{x^2-9}{x-3} & \text {for } x \ne 3 \\ k & \text{for } x =3 \end{cases}\) at x=3
- Let \(f(x)=\begin{cases} 2x & \text {for } x <2 \\ 2 & \text{for } x=2 \\ x^2 & \text{for } x >2 \end{cases}\). Show that f(x) has removable discontinuity at x=2.
- What condition is necessary for a function f(x) to be continuous at the point x=a? In what condition will f(x) be discontinuous at x=a?
- A function f(x) is defined as \(f(x)=\begin{cases} 1 & \text {for } x \ne 0 \\ 2 & \text{for } x =0 \end{cases}\). Find \(\displaystyle \lim_{x \to 0} f(x)\) if exists. Is the function continuous at x=0?
- Find the point of discontinuous of the following functions
- \(f(x)=\frac{x+1}{x-1}\)
- \(f(x)=\frac{3x-1}{x^3-5x^2+6x}\)
Additional Questions [BCB, page 394]
By
Bed Prasad Dhakal
Continuity
·
Grade 11
Pages
SEARCH
LATEST
3-latest-65px
SECCIONS
- Continuity (3)
- Grade 11 (27)
- ICTMath (1)
- Limit (9)
- Mathematica (5)
- Mathematics (6)
- Projective Geometry (4)
- Quaadratic Equation (1)
- ReadingsinICT (10)
- SEE (2)
- Set (3)
- Thesis (5)
- Training (8)
No comments:
Post a Comment