Additional Question (Limit)[Page 392]


  1. Prove that \( \displaystyle \lim_{x \to \frac{2}{3}} \frac{2}{2-3x}\) does NOT exist.

    Solution 👉 Click Here

  2. Do the following function define for the value x=1?
    1. \( f(x)=\frac{x-1}{x+2}\)

      Solution 👉 Click Here

    2. \( f(x)=\frac{x^3+1}{x-1}\)

      Solution 👉 Click Here

  3. What do you mean by the left hand limit and right hand limit of a function? What is the condition for the limit of a function to exist at a point?
    Prove that \(\displaystyle \lim_{x \to 0}|x|=0\) but \(\displaystyle \lim_{x \to 0} \frac{|x|}{x} \) does not exist.

    Solution 👉 Click Here

  4. Distinguish between limit and value of a function.
    It is given that \(f(x)=\frac{ax+b}{x+1},\displaystyle \lim_{x \to 0} f(x)=2\) and \( \displaystyle \lim_{x \to \infty} f(x)=1\). Prove that \(f(-2)=0\)

    Solution 👉 Click Here

  5. Define limit of a function at a point. It is given that \(f(x)=\frac{x+6}{cx-d},\displaystyle \lim_{x \to 0} f(x)=-6 \) and \( \displaystyle \lim_{x \to \infty} f(x)=\frac{1}{3}\).
    Prove that \(f(13)=\frac{1}{2}\)

    Solution 👉 Click Here

  6. What do you mean by an indeterminate form? State their different forms. Evaluate the following limit \(\displaystyle \lim_{x \to \infty} \sqrt{x} (\sqrt{x}-\sqrt{x-a})\)

    Solution 👉 Click Here

  7. Let \(f:R \to R \) be defined by \(f(x)=\begin{cases} x & \text{if x is an integer} \\ 0 & \text{if x is not an integer} \\ \end{cases}\)
    Find \( \displaystyle \lim_{x \to 1} f(x)\). Is it same as \(f(1)\)

    Solution 👉 Click Here

  8. Prove that
    1. \(\displaystyle \lim_{x \to 3} \left ( \frac{1}{x-3}-\frac{9}{x^3-3x^2}\right ) =\frac{2}{3}\)

      Solution 👉 Click Here

    2. \(\displaystyle \lim_{x \to 3} \left ( \frac{x^2+9}{x^2-9}-\frac{3}{x-3}\right )=\frac{1}{2}\)

      Solution 👉 Click Here

  9. Evaluate
    1. \(\displaystyle \lim_{x \to 2} \frac{x^{-3}-2^{-3}}{x-2}\)

      Solution 👉 Click Here

    2. \(\displaystyle \lim_{x \to \infty} \frac{(2x-1)^6(3x-1)^4}{(2x+1)^{10}}\)

      Solution 👉 Click Here

    3. \(\displaystyle \lim_{x \to 0} \frac{(1+x)^6-1}{(1+x)^2-1}\)

      Solution 👉 Click Here

    4. \(\displaystyle \lim_{x \to a} \frac{(x+2)^{\frac{5}{2}} -(a+2)^{\frac{5}{2}} }{x-a}\)

      Solution 👉 Click Here

  10. If \( \displaystyle \lim_{x \to a} \frac{x^3-a^3}{x-a}=27\), Find all possible values of a.

    Solution 👉 Click Here

  11. Find the limiting values of
    1. \( \displaystyle \lim_{x \to 0} \frac{\sin x^0}{x}\)

      Solution 👉 Click Here

    2. \( \displaystyle \lim_{x \to 0} \frac{1-\cos 4 x}{1-\cos 6x}\)

      Solution 👉 Click Here

    3. \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\frac{\pi}{2}-x}\)

      Solution 👉 Click Here

    4. \( \displaystyle \lim_{x \to 0} \frac{\tan 2 x-x}{3x-\sin x}\)

      Solution 👉 Click Here

    5. \( \displaystyle \lim_{x \to \pi} \frac{1-\sin (\frac{x}{2})}{(\pi-x)^2}\)

      Solution 👉 Click Here

    6. \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{1+\cos 2x}{(\pi-2x)^2}\)

      Solution 👉 Click Here

    7. \( \displaystyle \lim_{x \to 0} \sin (\frac{1}{x})\)

      Solution 👉 Click Here

    8. \( \displaystyle \lim_{x \to 0} x \sin (\frac{1}{x})\)

      Solution 👉 Click Here

    9. \( \displaystyle \lim_{x \to a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}\)

      Solution 👉 Click Here

    10. \( \displaystyle \lim_{x \to a} (a-x)\tan (\frac{\pi x}{2a})\)

      Solution 👉 Click Here

    11. \( \displaystyle \lim_{y \to 0} \frac{(x+y)\sec (x+y)-x \sec x}{y}\)

      Solution 👉 Click Here


    1. A function is defined as \(f(x)=\begin{cases} 3x^2+2 & \text { if } x<1 \\ 2x+3 & \text { if } x \ge 1 \end{cases}\).
      Find \(\displaystyle \lim_{x \to 1}f(x) \)

      Solution 👉 Click Here

    2. A function is defined as \(f(x)=\begin{cases} 3+2x & \text { if } -\frac{3}{2} \le x < 0\\ 3-2x & \text { if } 0 \le x < \frac{3}{2} \\ -3-2x & \text { if } x \ge \frac{3}{2} \end{cases}\).
      Find \(\displaystyle \lim_{x \to 0}f(x) \) and \(\displaystyle \lim_{x \to \frac{3}{2}}f(x) \) if they exist.

      Solution 👉 Click Here


    1. \(\displaystyle \lim_{x \to 0} \frac{e^{px}-1}{e^{qx}-1} \)

      Solution 👉 Click Here

    2. \(\displaystyle \lim_{x \to 0} \frac{e^x-e^{-x}-x}{x} \)

      Solution 👉 Click Here

    3. \(\displaystyle \lim_{x \to 0} \frac{a^x-1}{b^x-1} \)

      Solution 👉 Click Here


    1. \(\displaystyle \lim_{x \to 0} \frac{2^x-1}{\sin x} \)

      Solution 👉 Click Here

    2. \(\displaystyle \lim_{x \to 0} \frac{e^{\sin x} -\sin x -1}{x} \)

      Solution 👉 Click Here

    3. \(\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{e^{\cos x} -1}{\frac{\pi}{2}-x} \)

      Solution 👉 Click Here

    4. \(\displaystyle \lim_{x \to e} \frac{\log x-1}{x-e} \)

      Solution 👉 Click Here

No comments:

Post a Comment