- Prove that \( \displaystyle \lim_{x \to \frac{2}{3}} \frac{2}{2-3x}\) does NOT exist.
- Do the following function define for the value x=1?
- \( f(x)=\frac{x-1}{x+2}\)
- \( f(x)=\frac{x^3+1}{x-1}\)
- \( f(x)=\frac{x-1}{x+2}\)
- What do you mean by the left hand limit and right hand limit of a function? What is the condition for the limit of a function to exist at a point?
Prove that \(\displaystyle \lim_{x \to 0}|x|=0\) but \(\displaystyle \lim_{x \to 0} \frac{|x|}{x} \) does not exist. - Distinguish between limit and value of a function.
It is given that \(f(x)=\frac{ax+b}{x+1},\displaystyle \lim_{x \to 0} f(x)=2\) and \( \displaystyle \lim_{x \to \infty} f(x)=1\). Prove that \(f(-2)=0\) - Define limit of a function at a point. It is given that \(f(x)=\frac{x+6}{cx-d},\displaystyle \lim_{x \to 0} f(x)=-6 \) and \( \displaystyle \lim_{x \to \infty} f(x)=\frac{1}{3}\).
Prove that \(f(13)=\frac{1}{2}\) - What do you mean by an indeterminate form? State their different forms. Evaluate the following limit \(\displaystyle \lim_{x \to \infty} \sqrt{x} (\sqrt{x}-\sqrt{x-a})\)
- Let \(f:R \to R \) be defined by \(f(x)=\begin{cases}
x & \text{if x is an integer} \\
0 & \text{if x is not an integer} \\
\end{cases}\)
Find \( \displaystyle \lim_{x \to 1} f(x)\). Is it same as \(f(1)\) - Prove that
- \(\displaystyle \lim_{x \to 3} \left ( \frac{1}{x-3}-\frac{9}{x^3-3x^2}\right ) =\frac{2}{3}\)
- \(\displaystyle \lim_{x \to 3} \left ( \frac{x^2+9}{x^2-9}-\frac{3}{x-3}\right )=\frac{1}{2}\)
- Evaluate
- \(\displaystyle \lim_{x \to 2} \frac{x^{-3}-2^{-3}}{x-2}\)
- \(\displaystyle \lim_{x \to \infty} \frac{(2x-1)^6(3x-1)^4}{(2x+1)^{10}}\)
- \(\displaystyle \lim_{x \to 0} \frac{(1+x)^6-1}{(1+x)^2-1}\)
- \(\displaystyle \lim_{x \to a} \frac{(x+2)^{\frac{5}{2}} -(a+2)^{\frac{5}{2}} }{x-a}\)
- If \( \displaystyle \lim_{x \to a} \frac{x^3-a^3}{x-a}=27\), Find all possible values of a.
- Find the limiting values of
- \( \displaystyle \lim_{x \to 0} \frac{\sin x^0}{x}\)
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos 4 x}{1-\cos 6x}\)
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\frac{\pi}{2}-x}\)
- \( \displaystyle \lim_{x \to 0} \frac{\tan 2 x-x}{3x-\sin x}\)
- \( \displaystyle \lim_{x \to \pi} \frac{1-\sin (\frac{x}{2})}{(\pi-x)^2}\)
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{1+\cos 2x}{(\pi-2x)^2}\)
- \( \displaystyle \lim_{x \to 0} \sin (\frac{1}{x})\)
- \( \displaystyle \lim_{x \to 0} x \sin (\frac{1}{x})\)
- \( \displaystyle \lim_{x \to a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}\)
- \( \displaystyle \lim_{x \to a} (a-x)\tan (\frac{\pi x}{2a})\)
- \( \displaystyle \lim_{y \to 0} \frac{(x+y)\sec (x+y)-x \sec x}{y}\)
-
A function is defined as \(f(x)=\begin{cases} 3x^2+2 & \text { if } x<1 \\ 2x+3 & \text { if } x \ge 1 \end{cases}\).
Find \(\displaystyle \lim_{x \to 1}f(x) \) - A function is defined as \(f(x)=\begin{cases} 3+2x & \text { if } -\frac{3}{2} \le x < 0\\ 3-2x & \text { if } 0 \le x < \frac{3}{2} \\ -3-2x & \text { if } x \ge \frac{3}{2} \end{cases}\).
Find \(\displaystyle \lim_{x \to 0}f(x) \) and \(\displaystyle \lim_{x \to \frac{3}{2}}f(x) \) if they exist.
-
A function is defined as \(f(x)=\begin{cases} 3x^2+2 & \text { if } x<1 \\ 2x+3 & \text { if } x \ge 1 \end{cases}\).
- \(\displaystyle \lim_{x \to 0} \frac{e^{px}-1}{e^{qx}-1} \)
- \(\displaystyle \lim_{x \to 0} \frac{e^x-e^{-x}-x}{x} \)
- \(\displaystyle \lim_{x \to 0} \frac{a^x-1}{b^x-1} \)
- \(\displaystyle \lim_{x \to 0} \frac{2^x-1}{\sin x} \)
- \(\displaystyle \lim_{x \to 0} \frac{e^{\sin x} -\sin x -1}{x} \)
- \(\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{e^{\cos x} -1}{\frac{\pi}{2}-x} \)
- \(\displaystyle \lim_{x \to e} \frac{\log x-1}{x-e} \)
Additional Question (Limit)[Page 392]
Pages
SEARCH
LATEST
3-latest-65px
SECCIONS
- Continuity (3)
- Grade 11 (27)
- ICTMath (1)
- Limit (9)
- Mathematica (5)
- Mathematics (6)
- Projective Geometry (4)
- Quaadratic Equation (1)
- ReadingsinICT (10)
- SEE (2)
- Set (3)
- Thesis (5)
- Training (8)
No comments:
Post a Comment