- \( \displaystyle \lim_{x\to a}\frac{x^n-a^n}{x-a}=n{a^{n-1}}\)
Solution
We know that
\( \frac{x^n-a^n}{x-a}=\frac{(x-a)(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})}{x-a}\)
or \( \frac{x^n-a^n}{x-a}=(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})\)
Thus, taking limit as \( x \to a\), we get
\(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=\lim_{x\to a}(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})\)
or \(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=(a^{n-1}+a.a^{n-2}+a^2.a^{n-3}+...+a^{n-1})\)
or \(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=n a^{n-1}\)
This completes the proof
Limit of algrabic function
Pages
SEARCH
LATEST
3-latest-65px
SECCIONS
- Continuity (3)
- Grade 11 (27)
- ICTMath (1)
- Limit (9)
- Mathematica (5)
- Mathematics (6)
- Projective Geometry (4)
- Quaadratic Equation (1)
- ReadingsinICT (10)
- SEE (2)
- Set (3)
- Thesis (5)
- Training (8)
No comments:
Post a Comment