Limit of algrabic function


  1. \( \displaystyle \lim_{x\to a}\frac{x^n-a^n}{x-a}=n{a^{n-1}}\)

    Solution
    We know that
    \( \frac{x^n-a^n}{x-a}=\frac{(x-a)(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})}{x-a}\)
    or \( \frac{x^n-a^n}{x-a}=(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})\)
    Thus, taking limit as \( x \to a\), we get
    \(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=\lim_{x\to a}(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-1})\)
    or \(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=(a^{n-1}+a.a^{n-2}+a^2.a^{n-3}+...+a^{n-1})\)
    or \(\displaystyle \lim_{x\to a} \frac{x^n-a^n}{x-a}=n a^{n-1}\)
    This completes the proof

No comments:

Post a Comment