Limit (BCB-Revised Edition 2020, Exercise 15.3, Page 389)


  1. Test the continuity of discontinuity of the following function by calculating the left hand limits, the right-hand limits and the values of the functions at points specified.
    1. \( f(x)=x^2\) at x=4

      Solution 👉 Click Here

    2. \( f(x)=2-3x^2\) at x=0

      Solution 👉 Click Here

    3. \( f(x)=3x^2-2x+4\) at x=1

      Solution 👉 Click Here

    4. \( f(x)=\frac{1}{2x}\) at x=0

      Solution 👉 Click Here

    5. \( f(x)=\frac{1}{x-2}\) at x≠2

      Solution 👉 Click Here

    6. \( f(x)=\frac{1}{3x}\) at x≠0

      Solution 👉 Click Here

    7. \( f(x)=\frac{1}{1-x}\) at x=1

      Solution 👉 Click Here

    8. \( f(x)=\frac{1}{x-3}\) at x=3

      Solution 👉 Click Here

    9. \( f(x)=\frac{x^2-9}{x-3}\) at x=3

      Solution 👉 Click Here

    10. \( f(x)=\frac{x^2-16}{x-4}\) at x=4

      Solution 👉 Click Here

    11. \( f(x)=\frac{|x-2|}{x-2}\) at x=2

      Solution 👉 Click Here

    12. \( f(x)=\frac{x}{|x|}\) at x=0

      Solution 👉 Click Here

  2. Discuss the continuity of functions at the points specified
    1. \( f(x)= \begin{cases} 2-x^2 & \text{for } x \le 2 \\ 1 & \text{for } x > 2 \end{cases} \) at x=2

      Solution 👉 Click Here

    2. \( f(x)= \begin{cases} 2x^2+4 & \text{for } x \le 2 \\ 4x+1 & \text{for } x > 2 \end{cases} \) at x=2

      Solution 👉 Click Here

    3. \( f(x)= \begin{cases} 2x & \text{for } x \le 3 \\ 3x-3 & \text{for } x > 3 \end{cases} \) at x=3

      Solution 👉 Click Here

    4. \( f(x)= \begin{cases} 2x+1 & \text{for } x < 1 \\ 2 & \text{for } x =1 \\ 3x & \text{for } x >1 \end{cases} \) at x=1

      Solution 👉 Click Here


    1. A function is defined as follows
      \( f(x)= \begin{cases} x^2+2 & \text{for } x < 5 \\ 20 & \text{for } x =5 \\ 3x+12 & \text{for } x > 5 \end{cases} \).
      Show that f(x) has removable discontinuity at x=5

      Solution 👉 Click Here

    2. A function is defined as follows
      \( f(x)= \begin{cases} 2x-3 & \text{for } x < 2 \\ 2 & \text{for } x =2 \\ 3x-5 & \text{for } x > 2 \end{cases} \).
      Is the function f(x) continuous at x=2? If not, how can the function f(x) be made continuous at x=2?

      Solution 👉 Click Here


    1. A function is defined as follows
      \( f(x)= \begin{cases} kx+3 & \text{for } x \ge 2 \\ 3x-1 & \text{for } x < 2 \end{cases} \).
      Find the value of k so that f(x) is continuous at x=2

      Solution 👉 Click Here

    2. A function is defined as follows
      \( f(x)= \begin{cases} \frac{2x^2-18}{x-3} & \text{for } x \ne 3 \\ k & \text{for } x =3 \end{cases} \).
      Find the value of k so that f(x) is continuous at x=3

      Solution 👉 Click Here

No comments:

Post a Comment