- Test the continuity of discontinuity of the following function by calculating the left hand limits, the right-hand limits and the values of the functions at points specified.
- \( f(x)=x^2\) at x=4
- \( f(x)=2-3x^2\) at x=0
- \( f(x)=3x^2-2x+4\) at x=1
- \( f(x)=\frac{1}{2x}\) at x=0
- \( f(x)=\frac{1}{x-2}\) at x≠2
- \( f(x)=\frac{1}{3x}\) at x≠0
- \( f(x)=\frac{1}{1-x}\) at x=1
- \( f(x)=\frac{1}{x-3}\) at x=3
- \( f(x)=\frac{x^2-9}{x-3}\) at x=3
- \( f(x)=\frac{x^2-16}{x-4}\) at x=4
- \( f(x)=\frac{|x-2|}{x-2}\) at x=2
- \( f(x)=\frac{x}{|x|}\) at x=0
- Discuss the continuity of functions at the points specified
- \( f(x)= \begin{cases} 2-x^2 & \text{for } x \le 2 \\ 1 & \text{for } x > 2 \end{cases} \) at x=2
- \( f(x)= \begin{cases} 2x^2+4 & \text{for } x \le 2 \\ 4x+1 & \text{for } x > 2 \end{cases} \) at x=2
- \( f(x)= \begin{cases} 2x & \text{for } x \le 3 \\ 3x-3 & \text{for } x > 3 \end{cases} \) at x=3
- \( f(x)= \begin{cases} 2x+1 & \text{for } x < 1 \\ 2 & \text{for } x =1 \\ 3x & \text{for } x >1 \end{cases} \) at x=1
- A function is defined as follows
\( f(x)= \begin{cases} x^2+2 & \text{for } x < 5 \\ 20 & \text{for } x =5 \\ 3x+12 & \text{for } x > 5 \end{cases} \).
Show that f(x) has removable discontinuity at x=5 - A function is defined as follows
\( f(x)= \begin{cases} 2x-3 & \text{for } x < 2 \\ 2 & \text{for } x =2 \\ 3x-5 & \text{for } x > 2 \end{cases} \).
Is the function f(x) continuous at x=2? If not, how can the function f(x) be made continuous at x=2?
- A function is defined as follows
- A function is defined as follows
\( f(x)= \begin{cases} kx+3 & \text{for } x \ge 2 \\ 3x-1 & \text{for } x < 2 \end{cases} \).
Find the value of k so that f(x) is continuous at x=2 - A function is defined as follows
\( f(x)= \begin{cases} \frac{2x^2-18}{x-3} & \text{for } x \ne 3 \\ k & \text{for } x =3 \end{cases} \).
Find the value of k so that f(x) is continuous at x=3
- A function is defined as follows
Limit (BCB-Revised Edition 2020, Exercise 15.3, Page 389)
By
Bed Prasad Dhakal
Continuity
·
Grade 11
Pages
SEARCH
LATEST
3-latest-65px
SECCIONS
- Continuity (3)
- Grade 11 (27)
- ICTMath (1)
- Limit (9)
- Mathematica (5)
- Mathematics (6)
- Projective Geometry (4)
- Quaadratic Equation (1)
- ReadingsinICT (10)
- SEE (2)
- Set (3)
- Thesis (5)
- Training (8)
No comments:
Post a Comment