- From the equation whose roots are
- 3,-2
Solution :1a
Given roots roots are 3,-2, thus
\( \text {sum of roots}=(3)+(-2)=1, \text {product of roots}=(3)(-2)=-6\)
According to the question
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( 1 \right) x + \left ( -6 \right )=0\)
or \(x^2-x -6=0\)
This is the required quadratic equation
- -5,4
Solution :1b
Given roots roots are -5,4, thus
\( \text {sum of roots}=(-5)+(4)=-1, \text {product of roots}=(-5)(4)=-20\)
According to the question
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( -1 \right) x + \left ( -20 \right )=0\)
or \(x^2+x -20=0\)
This is the required quadratic equation
- \(\sqrt{3},-\sqrt{3}\)
Solution :1c
Given roots roots are \(\sqrt{3},-\sqrt{3}\), thus
\( \text {sum of roots}=(\sqrt{3})+(-\sqrt{3})=0, \text {product of roots}=(\sqrt{3})(-\sqrt{3})=-3\)
According to the question
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( 0 \right) x + \left ( -3 \right )=0\)
or \(x^2-3=0\)
This is the required quadratic equation
- \(\frac{1}{2} (-1+\sqrt{5}),\frac{1}{2} (-1-\sqrt{5}) \)
Solution :1d
Given roots roots are \(\frac{1}{2} (-1+\sqrt{5}),\frac{1}{2} (-1-\sqrt{5}) \), thus
\( \text {sum of roots}=\left (\frac{1}{2} (-1+\sqrt{5}) +\frac{1}{2} (-1-\sqrt{5}) \right)=-1, \text {product of roots}=\left (\frac{1}{2} (-1+\sqrt{5}).\frac{1}{2} (-1-\sqrt{5}) \right)=-1\)
According to the question
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( -1 \right) x + \left ( -1 \right )=0\)
or \(x^2+x-1=0\)
This is the required quadratic equation
- -3+5i,-3-5i
Solution :1e
Given roots roots are -3+5i,-3-5i, thus
\( \text {sum of roots}=(-3+5i) +(-3+5i )=-6, \text {product of roots}=(-3+5i) (-3+5i )=34\)
According to the question
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( -6 \right) x + \left ( 34 \right )=0\)
or \(x^2+6x+34=0\)
This is the required quadratic equation
- a+ib,a-ib
Solution :1f
Given roots roots are a+ib,a-ib, thus
\( \text {sum of roots}=(a+ib) +(a-ib )=2a, \text {product of roots}=(a+ib) +(a-ib)=a^2+b^2\)
According to the question
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( 2a \right) x + \left ( a^2+b^2 \right )=0\)
or \(x^2+2ax+a^2+b^2=0\)
This is the required quadratic equation
- 3,-2
-
- Find a quadratic equation whose roots are twice the roots of \(4x^2+8x-5=0\)
Solution :2a
Given quadratic equation is
\(4x^2+8x-5=0\)
Let \( \alpha,\beta\) are the roots of \(4x^2+8x-5=0\), then
\( \alpha+ \beta=-\frac{-8}{4}=-2, \alpha \beta=\frac{-5}{4}\)
According to the question, \( 2\alpha,2\beta\) are the roots of new equation
So, for the new quadratic equation
\( \text {sum of roots}=(2\alpha)+ (2\beta)=2 (\alpha+ \beta)=-4\)
\( \text {product of roots}=(2\alpha) (2\beta)=4 (\alpha \beta)=-5\)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( -4 \right) x + \left ( -5 \right )=0\)
or \(x^2+4x-5=0\)
This is the required quadratic equation
- Find a quadratic equation whose roots are reciprocals of the roots of \(3x^2-5x-2=0\)
Solution :2(b)
Given quadratic equation is
\(3x^2-5x-2=0\)
Let \( \alpha,\beta\) are the roots of \(3x^2-5x-2=0\), then
\( \alpha+ \beta=-\frac{5}{3}, \alpha \beta=\frac{-2}{3}\)
According to the question, \( \frac{1}{\alpha},\frac{1}{\beta}\) are the roots of new equation
So, for the new quadratic equation
\( \text {sum of roots}=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha + \beta}{\alpha \beta}=-\frac{5}{2}\)
\( \text {product of roots}=\frac{1}{\alpha}\frac{1}{\beta}=\frac{1}{\alpha \beta}=-\frac{3}{2}\)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( - \frac{5}{2} \right) x + \left ( -\frac{3}{2} \right )=0\)
or \(2x^2+5x-3=0\)
This is the required quadratic equation
- Find a quadratic equation whose roots are greater by h than the roots of \(x^2-px+q=0\)
Solution :2(c)
Given quadratic equation is
\(x^2-px+q=0\)
Let \( \alpha,\beta\) are the roots of \(x^2-px+q=0\), then
\( \alpha+ \beta=p, \alpha \beta=q\)
According to the question, \( \alpha +h,\beta +h\) are the roots of new equation
So, for the new quadratic equation
\( \text {sum of roots}=(\alpha+h)+(\beta+h)= 2h+ (\alpha+\beta)=2h+p\)
\( \text {product of roots}=(\alpha+h)(\beta+h)= \alpha \beta+h(\alpha+\beta)+h^2=q+ph+h^2\)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( 2h+p \right) x + \left ( q+ph+h^2 \right )=0\)
This is the required quadratic equation
- Find a quadratic equation whose roots are the squares of the roots of \(3x^2-5x-2=0\)
Solution :2(d)
Given quadratic equation is
\(3x^2-5x-2=0\)
Let \( \alpha,\beta\) are the roots of \(3x^2-5x-2=0\), then
\( \alpha+ \beta=\frac{5}{3}, \alpha \beta=-\frac{2}{3}\)
According to the question, \( \alpha ^2,\beta ^2\) are the roots of new equation
So, for the new quadratic equation
\( \text {sum of roots}=(\alpha ^2)+(\beta ^2)= (\alpha+ \beta)^2-2 \alpha \beta=\left ( \frac{5}{3} \right )^2 -2 \frac{-2}{3}=\frac{37}{9}\)
\( \text {product of roots}=(\alpha ^2)(\beta ^2)= (\alpha \beta)^2=\frac{4}{9}\)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( \frac{37}{9} \right) x + \left ( \frac{4}{9} \right )=0\)
or \( 9x^2- 37 x + 4=0\)
This is the required quadratic equation
- Find a quadratic equation whose roots are twice the roots of \(4x^2+8x-5=0\)
- Find a quadratic equation with rational coefficients one of whose roots is
- 4+3i
Solution :3a
Given that
one root is 4+3i
We know that, immaginary roots always occur in conjugates, therefore
other root is 4-3i
- \(\frac{1}{5+3i}\)
Solution :3b
Given that
one root is \(\frac{1}{5+3i}\)
or one root is \(\frac{1}{5+3i} \frac{5-3i}{5-3i}=\frac{5-3i}{34}\)
We know that, immaginary roots always occur in conjugates, therefore
other root is \( \frac{5+3i}{34}\)
- \(2+\sqrt{3}\)
Solution :3c
Given that
one root is \(2+\sqrt{3}\)
We know that, immaginary roots always occur in conjugates, therefore
other root is \(2-\sqrt{3}\)
- 4+3i
- Find the value of k so that the equation
- \(2x^2+kx-15=0\) has one root 3
Solution :4a
Given quadratic equation is
\(2x^2+kx-15=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=2,b=k,c=-15\)
Also
one root is 3, and suppose next root is \(\alpha\)
Now
\(3+ \alpha=-\frac{b}{a},3 \alpha =\frac{c}{a}\)
or \(3+ \alpha=-\frac{k}{2},3 \alpha =\frac{-15}{2}\)
or \(3+ \alpha=-\frac{k}{2},\alpha =\frac{-5}{2}\)
or \(3-\frac{5}{2}=-\frac{k}{2}\)
or \(\frac{1}{2}=-\frac{k}{2}\)
or \(k=-1\)
This completes the solution.
- \(3x^2+kx-2=0\) has roots whose sum is equal to 6
Solution :4b
Given quadratic equation is
\(3x^2+kx-2=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=3,b=k,c=-2\)
Also
sum of roots is 6
Now
\(\alpha+\beta=6\)
or \(-\frac{k}{3}=6\)
or \(k=-18\)
This completes the solution.
- \(2x^2+(4-k)x-17=0\) has roots equal but opposite in sign
Solution :4c
Given quadratic equation is
\(2x^2+(4-k)x-17=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=2,b=4-k,c=-17\)
Also
roots are equal but opposite in sign
Now
\(\alpha=-\beta\)
or \(\alpha +\beta =0\)
or \(-\frac{b}{a}=0\)
or \(b=0\)
or \(4-k=0\)
or \(k=4\)
This completes the solution.
- \(3x^2+(5+k)x+8=0\) has roots numerically equal but opposite in sign
Solution :4d
Given quadratic equation is
\(3x^2+(5+k)x+8=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=3,b=5+k,c=8\)
Also
roots are equal but opposite in sign
Now
\(b=0\)
or \(5+k=0\)
or \(k=-5\)
This completes the solution.
- \(3x^2+7x+6-k=0\) has one root equal to zero
Solution :4e
Given quadratic equation is
\(3x^2+7x+6-k=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=3,b=7,c=6-k\)
Also
one root is zero
Now
\(\alpha \beta =0\)
or \(\frac{c}{a}=0\)
or \(c=0\)
or \(6-k=0\)
or \(k=6\)
This completes the solution.
- \(4x^2-17x+k=0\) has the reciprocal roots
Solution :4f
Given quadratic equation is
\(4x^2-17x+k=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=4,b=-17,c=k\)
Also
roots are in reciprocal relation
Now
\(\alpha = \frac{1}{\beta }\)
or \(\alpha \beta =1\)
or \(\frac{c}{a}=1\)
or \(\frac{k}{4}=1\)
or \(k=4\)
This completes the solution.
- \(4x^2+kx+5=0\) has roots whose difference is \(\frac{1}{4}\)
Solution :4g
Given quadratic equation is
\(4x^2+kx+5=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=4,b=k,c=5\)
Also
difference of roots is 1/4
or \(\alpha - \beta =\frac{1}{4}\)
We know that
\(\alpha + \beta =\frac{-k}{4},\alpha \beta =\frac{5}{4} \)
Thus,
\( (\alpha + \beta )^2= (\alpha- \beta )^2+ 4 \alpha \beta \)
or \( \frac{k^2}{16}= \frac{1}{16}+5\)
or \(k= \pm 9\)
This completes the solution.
- \(2x^2+kx-15=0\) has one root 3
- Show that -1 is a root of the equation \((a+b-2c)x^2+(2a-b-c)x+(c+a-2b)=0\). Find the other root.
Solution :5
Given quadratic equation is
\((a+b-2c)x^2+(2a-b-c)x+(c+a-2b)=0\)
- If (-1) is aa root, then it musst satisfy the equation
\((a+b-2c)x^2+(2a-b-c)x+(c+a-2b)=0\)
or \((a+b-2c)(-1)^2+(2a-b-c)(-1)+(c+a-2b)=0\)
or \((a+b-2c)-(2a-b-c)+(c+a-2b)=0\)
or \(0=0\)
Therefore, we conclude that (-1) is a root. - Given that (-1) is a root. Let us suppose that other root is \( \alpha\), then
\( \alpha (-1)= \frac{c}{a}\)
or \( \alpha (-1)= \frac{c+a-2b}{a+b-2c}\)
or \( \alpha = - \frac{c+a-2b}{a+b-2c}\)
this is the other root.
- If (-1) is aa root, then it musst satisfy the equation
- Find the value of m for which the equation \((m+1)x^2+2(m+3)x+(2m+3)=0\) will have (a) reciprocal roots (b) one root zero.
Solution :6
-
Given quadratic equation is
\((m+1)x^2+2(m+3)x+(2m+3)=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=m+1,b=2(m+3),c=2m+3\)
Also
roots are in reciprocal relation
Now
\(\alpha = \frac{1}{\beta }\)
or \(\alpha \beta =1\)
or \(\frac{c}{a}=1\)
or \(\frac{2m+3}{m+1}=1\)
or \(m=-2\)
This completes the solution.
- Given quadratic equation is
\((m+1)x^2+2(m+3)x+(2m+3)=0\)
Comparing with \(ax^2+bx+c=0\), we get \(a=m+1,b=2(m+3),c=2m+3\)
Also
one root is zero
Now
\(\alpha \beta =0\)
or \(\frac{c}{a}=0\)
or \(\frac{2m+3}{m+1}=0\)
or \(m=-3/2\)
This completes the solution.
-
Given quadratic equation is
- If the roots of the equation \(x^2+ax+c=0\) differ by 1, prove that \(a^2=4c+1\)
Solution :7
Given quadratic equation is
\(x^2+ax+c=0\)
Let \(\alpha, \beta\) are the roots, then
\( \alpha+ \beta =- \frac{b}{a} \) and \( \alpha \beta =\frac{c}{a} \)
or \( \alpha+ \beta =-a \) and \( \alpha \beta =c \)
According to the question
\( \alpha- \beta =1\)
or \( (\alpha- \beta)^2=1 \)
or \( (\alpha+ \beta)^2-4 \alpha \beta =1 \)
or \( a^2-4 c =1 \)
or \( a^2=1 +4c\)
This completes the proof.
- If \( \alpha, \beta\) are the roots of the equation \(x^2-x-6=0\), find the equation whose roots are
- \(\alpha ^2 \beta ^{-1}\)and \(\beta ^2 \alpha ^{-1}\)
Solution :8a
Given quadratic equation is
\(x^2-x-6=0\)
Let \( \alpha,\beta\) are the roots of \(x^2-x-6=0\), then
\( \alpha+ \beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\)
or \( \alpha+ \beta=1, \alpha \beta=-6\)
According to the question, the new roots are
\(\alpha ^2 \beta ^{-1}\) and \(\beta ^2 \alpha ^{-1}\)
So,Sum of new roots =\(\alpha ^2 \beta ^{-1}+ \beta ^2 \alpha ^{-1}\) =\( \frac{\alpha ^2}{\beta}+ \frac{\beta ^2}{\alpha}\) =\( \frac{\alpha ^3+\beta ^3}{\alpha \beta}\)
=\( \frac{(\alpha +\beta) ^3-3\alpha \beta (\alpha +\beta) }{\alpha \beta}\)
=\( \frac{(\alpha +\beta) ^3} {\alpha \beta} - \frac{3\alpha \beta (\alpha +\beta) }{\alpha \beta}\)
=\( \frac{(\alpha +\beta) ^3} {\alpha \beta} - 3 (\alpha +\beta) \)
=\( \frac{\left (1 \right ) ^3} {-6} - 3 \left (1 \right ) \)
=\( -\frac{1}{6} -3 \)
=\( -\frac{19}{6} \)Product of new roots =\(\alpha ^2 \beta ^{-1} . \beta ^2 \alpha ^{-1}\) =\( \frac{\alpha ^2}{\beta}. \frac{\beta ^2}{\alpha}\) =\( \alpha \beta\)
=\( -6\)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( -\frac{19}{6} \right) x + \left (-6 \right)=0\)
or \( 6x^2+19x -36=0\)
This is the required quadratic equation - \(\alpha + \frac{1}{\beta}\) and \(\beta + \frac{1}{\alpha}\)
Solution :8(b)
Given quadratic equation is
\(x^2-x-6=0\)
Let \( \alpha,\beta\) are the roots of \(x^2-x-6=0\), then
\( \alpha+ \beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\)
or \( \alpha+ \beta=1, \alpha \beta=-6\)
According to the question, the new roots are
\(\alpha +\frac{1}{\beta}\) and \(\beta +\frac{1}{\alpha}\)
So,Sum of new roots =\(\alpha +\frac{1}{\beta}+\beta +\frac{1}{\alpha}\) =\(\alpha +\beta +\frac{1}{\beta}+\frac{1}{\alpha} \) =\( (\alpha +\beta) +\frac{\alpha +\beta}{\alpha \beta} \)
=\( 1+\frac{1}{-6}\)
=\(\frac{5}{6} \)Product of new roots =\( \left ( \alpha +\frac{1}{\beta} \right ). \left ( \beta +\frac{1}{\alpha}\right ) \) =\(\frac{\alpha \beta+1}{\beta }\frac{\alpha \beta+1}{\alpha } \) =\(\frac{(\alpha \beta)^2+2(\alpha \beta) +1}{\alpha \beta } \)
=\(\frac{36-12+1}{-6}\)
=\(-\frac{25}{6} \)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( \frac{5}{6} \right) x + \left (-\frac{25}{6} \right)=0\)
or \( 6x^2-5x -25=0\)
This is the required quadratic equation
- \(\alpha ^2 \beta ^{-1}\)and \(\beta ^2 \alpha ^{-1}\)
- If \( \alpha, \beta\) are the roots of the equation \(ax^2+bx+c=0\), find the equation whose roots are
- \(\alpha \beta ^{-1}\)and \(\beta \alpha ^{-1}\)
Solution :9a
Given quadratic equation is
\(ax^2+bx+c=0\)
Let \( \alpha,\beta\) are the roots of \(ax^2+bx+c=0\), then
\( \alpha+ \beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\)
According to the question, the new roots are
\(\alpha \beta ^{-1}\) and \(\beta \alpha ^{-1}\)
So,Sum of new roots =\(\alpha \beta ^{-1}+ \beta \alpha ^{-1}\) =\( \frac{\alpha }{\beta}+ \frac{\beta }{\alpha}\) =\( \frac{\alpha ^2+\beta ^2}{\alpha \beta}\)
=\( \frac{(\alpha +\beta) ^2-2\alpha \beta }{\alpha \beta}\)
=\( \frac{(\alpha +\beta) ^2}{\alpha \beta} -2 \frac {\alpha \beta }{\alpha \beta}\)
=\( \frac{(\alpha +\beta) ^2}{\alpha \beta} -2 \)
=\( \frac{b^2-2ac}{ac} \)Product of new roots =\(\alpha \beta ^{-1} . \beta \alpha ^{-1}\) =\( \frac{\alpha }{\beta}. \frac{\beta }{\alpha}\) =\( 1\)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( \frac{b^2-2ac}{ac} \right) x + \left (1 \right)=0\)
or \( acx^2- (b^2-2ac)x + ac=0\)
This is the required quadratic equation - \(\alpha ^3 \) and \(\beta ^3\)
Solution :9b
Given quadratic equation is
\(ax^2+bx+c=0\)
Let \( \alpha,\beta\) are the roots of \(ax^2+bx+c=0\), then
\( \alpha+ \beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\)
According to the question, the new roots are
\(\alpha ^3 \) and \(\beta ^3\)
So,Sum of new roots =\(\alpha ^3+ \beta ^3\) =\( (\alpha +\beta) ^3-3\alpha \beta (\alpha +\beta)\) =\( \left (-\frac{b}{a} \right ) ^3- 3 \left (\frac{c}{a} \right ) \left (-\frac{b}{a} \right ) \)
=\( -\frac{b^3}{a^3} + \frac{3bc}{a^2} \)
=\( \frac{3abc-b^3}{a^3} \)Product of new roots =\(\alpha ^3 .\beta ^3\) =\( \left ( \frac{c}{a} \right)^3\) =\( \frac{c^3}{a^3}\)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( \frac{3abc-b^3}{a^3} \right) x + \left ( \frac{c^3}{a^3} \right)=0\)
or \( a^3x^2+ (b^3-3abc)x + c^3=0\)
This is the required quadratic equation - \((\alpha-\beta)^2 \) and \((\alpha+\beta)^2 \)
Solution :9c
Given quadratic equation is
\(ax^2+bx+c=0\)
Let \( \alpha,\beta\) are the roots of \(ax^2+bx+c=0\), then
\( \alpha+ \beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\)
According to the question, the new roots are
\((\alpha-\beta)^2 \) and \((\alpha+\beta)^2 \)
So,Sum of new roots =\((\alpha+\beta)^2 +(\alpha-\beta)^2 \) =\((\alpha+\beta)^2 +(\alpha+\beta)^2 -4 \alpha \beta \) =\(2 \left ( \frac{b}{a}\right )^2 -4 \left ( \frac{c}{a}\right ) \)
=\(\frac{2b^2-4ac}{a^2} \)Product of new roots =\((\alpha+\beta)^2 .(\alpha-\beta)^2 \) =\((\alpha+\beta)^2 \left [(\alpha+\beta)^2 -4 \alpha \beta \right ]\) =\((\alpha+\beta)^4 -4 (\alpha \beta )(\alpha+\beta)^2 \)
=\(\frac{b^4}{a^4} -4 \frac{c}{a} \frac{b^2}{a^2} \)
=\(\frac{b^4-4a^2b^2c}{a^4} \)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( \frac{2b^2-4ac}{a^2} \right) x + \left (\frac{b^4-4a^2b^2c}{a^4} \right)=0\)
or \( a^4x^2- (2a^2b^2-4a^3c)x + (b^4-4a^2b^2c)=0\)
This is the required quadratic equation - the reciprocal of the roots of given equation
Solution :9d
Given quadratic equation is
\(ax^2+bx+c=0\)
Let \( \alpha,\beta\) are the roots of \(ax^2+bx+c=0\), then
\( \alpha+ \beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\)
According to the question, the new roots are
\( \frac{1}{\alpha} \) and \(\frac{1}{\beta} \)
So,Sum of new roots =\(\frac{1}{\alpha}+\frac{1}{\beta} \) =\(\frac{\alpha+\beta}{\alpha \beta} \) =\(- \frac{b}{c} \) Product of new roots =\(\frac{1}{\alpha} \frac{1}{\beta}\) =\(\frac{1}{\alpha \beta}\) =\(\frac{a}{c} \)
The new quadratic equation is
\( x^2 - (\text {sum of roots}) x + (\text {product of roots}) =0\)
or \( x^2- \left ( -\frac{b}{c} \right) x + \left (\frac{a}{c} \right)=0\)
or \( cx^2+bx +a=0\)
This is the required quadratic equation
- \(\alpha \beta ^{-1}\)and \(\beta \alpha ^{-1}\)
-
- If the roots of the equation \(ax^2+bx+c=0\) be in the ratio of 3:4, prove that \(12b^2=49ac\)
Solution :10a
Given quadratic equation is
\(ax^2+bx+c=0\)
Assume that \( 3k,4k\) are the roots of \(ax^2+bx+c=0\), then
\( 3k+ 4k=-\frac{b}{a}, 3k.4k=\frac{c}{a}\)
or \( 7k=-\frac{b}{a}, 12k^2=\frac{c}{a}\)
or \( k=-\frac{b}{7a}, 12k^2=\frac{c}{a}\)
or \( 12 \left ( -\frac{b}{7a} \right )^2=\frac{c}{a}\)
or \( 12 \left ( \frac{b^2}{49a^2} \right )=\frac{c}{a}\)
or \( 12 b^2=49ac\)
This completes the proof.
- If one root of the equation \(ax^2+bx+c=0\) be four times the other root, show that \(4b^2=25ac\)
Solution :10b
Given quadratic equation is
\(ax^2+bx+c=0\)
Assume that \( k,4k\) are the roots of \(ax^2+bx+c=0\), then
\( k+ 4k=-\frac{b}{a}, k.4k=\frac{c}{a}\)
or \( 5k=-\frac{b}{a}, 4k^2=\frac{c}{a}\)
or \( k=-\frac{b}{5a}, 4k^2=\frac{c}{a}\)
or \( 4 \left ( -\frac{b}{5a} \right )^2=\frac{c}{a}\)
or \( 4 \left ( \frac{b^2}{25a^2} \right )=\frac{c}{a}\)
or \( 4 b^2=25ac\)
This completes the proof.
- For what values of m, the equation \(x^2-mx+m+1=0\) may have its root in the ratio 2:3
Solution :10c
Given quadratic equation is
\(x^2-mxx+m+1=0\)
Assume that \( 2k,3k\) are the roots of \(x^2-mxx+m+1=0\), then
\( 2k+ 3k=m, 2k.3k=m+1\)
Now, using the roots, we get
\(6k^2=m+1\)
or\(6 \left (\frac{m}{5} \right )^2 =m+1\)
or\(\frac{6m^2}{25} =m+1\)
or\(6m^2-25m-25=0\)
or\(m=5,-\frac{5}{6}\)
This completes the proof
- If the roots of the equation \(ax^2+bx+c=0\) be in the ratio of 3:4, prove that \(12b^2=49ac\)
-
- If \( \alpha, \beta\) are the roots of the equation \(px^2+qx+q=0\), prove that \(\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}=0\)
Solution :11a
Method 1
Given quadratic equation is
\(px^2+qx+q=0\)
Given that \( \alpha, \beta\) are the roots of \(px^2+qx+q=0\), then
\( \alpha+ \beta=-\frac{q}{p}, \alpha \beta=\frac{q}{p}\)
Now, using the roots, we get
\(\frac{\alpha+ \beta}{\sqrt{\alpha \beta}}=\frac{-\frac{q}{p}}{\frac{q}{p}}\)
or\(\frac{\alpha}{\sqrt{\alpha \beta}}+\frac{ \beta}{\sqrt{\alpha \beta}}=- \sqrt{\frac{q}{p}}\)
or\( \sqrt{ \frac{\alpha}{\beta}}+ \sqrt{ \frac{ \beta}{\alpha }}+ \sqrt{\frac{q}{p}}=0\)
This completes the proof
Method 2
Given quadratic equation is
\(px^2+qx+q=0\)
Given that \( \alpha, \beta\) are the roots of \(px^2+qx+q=0\), then
\( \alpha+ \beta=-\frac{q}{p}, \alpha \beta=\frac{q}{p}\)
Now, taking LHS, we have
\( \sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}\)
or\( \frac{\sqrt{\alpha}}{\sqrt{\beta}}+\frac{\sqrt{\beta}}{\sqrt{\alpha}}+\sqrt{\frac{q}{p}}\)
or\( \frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\sqrt{\frac{q}{p}}\)
or\( \frac{-\frac{q}{p}}{\sqrt{\frac{q}{p}}}+\sqrt{\frac{q}{p}}\)
or\( -\sqrt{\frac{q}{p}}+\sqrt{\frac{q}{p}}\)
or0
Which is RHS, therefore, we have
\( \sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}=0\)
- If roots of the equation \(lx^2+nx+n=0\) be in the ratio of p:q, prove that \(\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{n}{l}}=0\)
Solution :11b
Method 0
Given quadratic equation is
\(lx^2+nx+n=0\)
Given that \( \alpha, \beta\) are the roots of \(lx^2+nx+n=0\), then
\( \alpha+ \beta=-\frac{n}{l}, \alpha \beta=\frac{n}{l}, \frac{\alpha}{\beta}=\frac{p}{q}\)
Now, using the roots, we get
\(\frac{\alpha+ \beta}{\sqrt{\alpha \beta}}=\frac{-\frac{n}{l}}{ \sqrt{\frac{n}{l}}}\)
or\(\frac{\alpha}{\sqrt{\alpha \beta}}+\frac{ \beta}{\sqrt{\alpha \beta}}=- \sqrt{\frac{n}{l}}\)
or\( \sqrt{ \frac{\alpha}{\beta}}+ \sqrt{ \frac{ \beta}{\alpha }}+ \sqrt{\frac{n}{l}}=0\)
or\( \sqrt{ \frac{p}{q}}+ \sqrt{ \frac{ q}{p}}+ \sqrt{\frac{n}{l}}=0\)
This completes the proof
Method 1
Given quadratic equation is
\(lx^2+nx+n=0\)
Let us assume that \( p \alpha,q \alpha \) are the roots of \(lx^2+nx+n=0\), then the roots are in the ration of p:q, now according to the question
\(p \alpha q \alpha =\frac{n}{l}\)
or \(pq \alpha ^2 =\frac{n}{pql}\)
Since \(p \alpha\) is the one root of the equation \(lx^2+nx+n=0\), we get
\(l (p \alpha)^2+n(p \alpha)+n=0\)
or \(lp^2 (\alpha ^2) +np(\alpha)+n=0\)
or \(lp^2 \frac{n}{pql} +np \sqrt{\frac{n}{pql}} +n=0\)
or \(\frac{p}{q} +\sqrt{\frac{np}{ql}} +1=0\)
Dividing both side by \(\sqrt{\frac{p}{q}} \), we get
\(\sqrt{\frac{p}{q}} +\sqrt{\frac{n}{l}} +\sqrt{\frac{q}{p}}=0\)
or \(\sqrt{\frac{p}{q}} +\sqrt{\frac{q}{p}} +\sqrt{\frac{n}{l}} =0\)
Method 2
Given quadratic equation is
\(lx^2+nx+n=0\)
Let \( \alpha, \beta\) are the roots of \(lx^2+nx+n=0\), then
\( \alpha+ \beta=-\frac{n}{l}, \alpha \beta=\frac{n}{l},\frac{\alpha}{ \beta}=\frac{p}{q}\)
Now, taking LHS, we have
\( \sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{n}{l}}\)
or\( \sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{n}{l}}\)
or\( \frac{\sqrt{\alpha}}{\sqrt{\beta}}+\frac{\sqrt{\beta}}{\sqrt{\alpha}}+\sqrt{\frac{n}{l}}\)
or\( \frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\sqrt{\frac{n}{l}}\)
or\( \frac{-\frac{n}{l}}{\sqrt{\frac{n}{l}}}+\sqrt{\frac{n}{l}}\)
or\( -\sqrt{\frac{n}{l}}+\sqrt{\frac{n}{l}}\)
or0
Which is RHS, therefore, we have
\( \sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{n}{l}}=0\)
- If \( \alpha, \beta\) are the roots of the equation \(px^2+qx+q=0\), prove that \(\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}=0\)
- If one root of the equation \(ax^2+bx+c=0\) be square of the other root, prove that \(b^3+a^2c+ac^2=3abc\)
Solution :12
Given quadratic equation is
\(ax^2+bx+c=0\)
Let us assume that \( \alpha,\beta\) are the roots of \(ax^2+bx+c=0\), then
According to question
\(\alpha=\beta ^2, \alpha+\beta =-\frac{b}{a}, \alpha\beta =\frac{c}{a}\)
or \(\beta ^2+\beta =-\frac{b}{a}, \beta ^2\beta =\frac{c}{a}\)
or \(\beta (1+ \beta) =-\frac{b}{a}, \beta ^3 =\frac{c}{a}\)
Taking the cube of first part, we get
\(\beta ^3 (1+ \beta)^3 =-\frac{b^3}{a^3}\)
or \(\frac{c}{a} (1+ 3 \beta+3 \beta ^2+\beta ^3) =-\frac{b^3}{a^3}\)
or \(\frac{c}{a} (1+ 3 \beta (1+\beta) +\beta ^3) =-\frac{b^3}{a^3}\)
or \(\frac{c}{a} \left ( 1+ 3 \left ( -\frac{b}{a} \right ) +\frac{c}{a} \right ) =-\frac{b^3}{a^3}\)
or \(\frac{c}{a} \left ( \frac{a-3b+c}{a} \right ) =-\frac{b^3}{a^3}\)
or \(\frac{ac-3bc+c^2}{a^2} =-\frac{b^3}{a^3}\)
or \(a^2c-3abc+ac^2 =-b^3\)
or \(b^3+a^2c+ac^2 =3abc\)
Grade 11 Mathematics: Quadratic Equation [BCB Exercise 6.2]
By
Bed Prasad Dhakal
Grade 11
·
Quaadratic Equation
- From the equation whose roots are
- 3,-2
- -5,4
- \(\sqrt{3},-\sqrt{3}\)
- \(\frac{1}{2} (-1+\sqrt{5}),\frac{1}{2} (-1-\sqrt{5}) \)
- -3+5i,-3-5i
- a+ib,a-ib
- 3,-2
-
- Find a quadratic equation whose roots are twice the roots of \(4x^2+8x-5=0\)
- Find a quadratic equation whose roots are reciprocals of the roots of \(3x^2-5x-2=0\)
- Find a quadratic equation whose roots are greater by h than the roots of \(x^2-px+q=0\)
- Find a quadratic equation whose roots are the squares of the roots of \(3x^2-5x-2=0\)
- Find a quadratic equation whose roots are twice the roots of \(4x^2+8x-5=0\)
- Find a quadratic equation with rational coefficients one of whose roots is
- 4+3i
- \(\frac{1}{5+3i}\)
- \(2+\sqrt{3}\)
- 4+3i
- Find the value of k so that the equation
- \(2x^2+kx-15=0\) has one root 3
- \(3x^2+kx-2=0\) has roots whose sum is equal to 6
- \(2x^2+(4-k)x-17=0\) has roots equal but opposite in sign
- \(3x^2+(5+k)x+8=0\) has roots numerically equal but opposite in sign
- \(3x^2+7x+6-k=0\) has one root equal to zero
- \(4x^2-17x+k=0\) has the reciprocal roots
- \(4x^2+kx+5=0\) has roots whose difference is \(\frac{1}{4}\)
- \(2x^2+kx-15=0\) has one root 3
- Show that -1 is a root of the equation \((a+b-2c)x^2+(2a-b-c)x+(c+a-2b)=0\). Find the other root.
- Find the value of m for which the equation \((m+1)x^2+2(m+3)x+(2m+3)=0\) will have (a) reciprocal roots (b) one root zero.
- If the roots of the equation \(x^2+ax+c=0\) differ by 1, prove that \(a^2=4c+1\)
- If \( \alpha, \beta\) are the roots of the equation \(x^2-x-6=0\), find the equation whose roots are
- \(\alpha ^2 \beta ^{-1}\)and \(\beta ^2 \alpha ^{-1}\)
- \(\alpha + \frac{1}{\beta}\) and \(\beta + \frac{1}{\alpha}\)
- \(\alpha ^2 \beta ^{-1}\)and \(\beta ^2 \alpha ^{-1}\)
- If \( \alpha, \beta\) are the roots of the equation \(ax^2+bx+c=0\), find the equation whose roots are
- \(\alpha \beta ^{-1}\)and \(\beta \alpha ^{-1}\)
- \(\alpha ^3 \) and \(\beta ^3\)
- \((\alpha-\beta)^2 \) and \((\alpha+\beta)^2 \)
- the reciprocal of the roots of given equation
- \(\alpha \beta ^{-1}\)and \(\beta \alpha ^{-1}\)
-
- If the roots of the equation \(ax^2+bx+c=0\) be in the ratio of 3:4, prove that \(12b^2=49ac\)
- If one root of the equation \(ax^2+bx+c=0\) be four times the other root, show that \(4b^2=25ac\)
- For what values of m, the equation \(x^2-mx+m+1=0\) may have its root in the ratio 2:3
- If the roots of the equation \(ax^2+bx+c=0\) be in the ratio of 3:4, prove that \(12b^2=49ac\)
-
- If \( \alpha, \beta\) are the roots of the equation \(px^2+qx+q=0\), prove that \(\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}=0\)
- If roots of the equation \(lx^2+nx+n=0\) be in the ratio of p:q, prove that \(\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{n}{l}}=0\)
- If \( \alpha, \beta\) are the roots of the equation \(px^2+qx+q=0\), prove that \(\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}=0\)
- If one root of the equation \(ax^2+bx+c=0\) be square of the other root, prove that \(b^3+a^2c+ac^2=3abc\)
Pages
SEARCH
LATEST
3-latest-65px
SECCIONS
- Continuity (3)
- Grade 11 (27)
- ICTMath (1)
- Limit (9)
- Mathematica (5)
- Mathematics (6)
- Projective Geometry (4)
- Quaadratic Equation (1)
- ReadingsinICT (10)
- SEE (2)
- Set (3)
- Thesis (5)
- Training (8)
No comments:
Post a Comment