- \( \displaystyle \lim_{x \to 0} \frac{\sin ax}{x} \)
- \( \displaystyle \lim_{x \to 0} \frac{\tan bx}{x} \)
- \( \displaystyle \lim_{x \to 0} \frac{\sin mx}{\sin nx} \)
- \( \displaystyle \lim_{x \to 0} \frac{\tan ax}{\tan bx} \)
- \( \displaystyle \lim_{x \to 0} \frac{\sin px}{\tan qx} \)
- \( \displaystyle \lim_{x \to a} \frac{\sin (x-a)}{x^2-a^2} \)
- \( \displaystyle \lim_{x \to p} \frac{x^2-p^2}{\tan (x-p)} \)
- \( \displaystyle \lim_{x \to 0} \frac{\sin ax. \cos bx}{\sin cx} \)
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2} \)
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos 6x}{x^2} \)
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos 9x}{x^2} \)
- \( \displaystyle \lim_{x \to 0} \frac{\cos ax-\cos bx}{x^2} \)
- \( \displaystyle \lim_{x \to 0} \frac{\sin ax-\sin bx}{x} \)
- \( \displaystyle \lim_{x \to 0} \frac{1-\cos px}{1-\cos qx} \)
- \( \displaystyle \lim_{x \to 0} \frac{\tan x-\sin x}{x^3} \)
- \( \displaystyle \lim_{x \to 0} \frac{\tan 2x-\sin 2x}{x^3} \)
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} (\sec x -\tan x) \)
- \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{\sec ^2 x-2}{\tan x-1}\)
- \( \displaystyle \lim_{x \to \frac{\pi}{4}} \frac{2- \csc ^2 x}{1 -\cot x}\)
- \( \displaystyle \lim_{x \to y} \frac{\tan x -\tan y}{x-y}\)
- \( \displaystyle \lim_{x \to y} \frac{\sin x -\sin y}{x-y}\)
- \( \displaystyle \lim_{x \to y} \frac{\cos x -\cos y}{x-y}\)
- \( \displaystyle \lim_{x \to \theta} \frac{x \cot \theta -\theta \cot x}{x -\theta}\)
- \( \displaystyle \lim_{x \to \theta} \frac{x \cos \theta -\theta \cos x}{x -\theta}\)
- \( \displaystyle \lim_{x \to 1} \frac{1+ \cos \pi x}{\tan ^2 \pi x}\)
- \( \displaystyle \lim_{x \to \theta} \frac{x \tan \theta -\theta \tan x}{x -\theta}\)
- \( \displaystyle \lim_{\theta \to \frac{\pi}{4}} \frac{\cos \theta -\sin \theta}{\theta -\frac{\pi}{4}}\)
- \( \displaystyle \lim_{x \to c} \frac{\sqrt{x}-\sqrt{c}}{\sin x-\sin c}\)
- Find the limits of
- \( \displaystyle \lim_{x \to 0} \frac{e^{6x}-1}{x}\)
- \( \displaystyle \lim_{x \to 0} \frac{e^{2x}-1}{x. 2^{x+1}}\)
- \( \displaystyle \lim_{x \to 0} \frac{e^{ax}-e^{bx}}{x}\)
- \( \displaystyle \lim_{x \to 0} \frac{a^x+b^x-2}{x}\)
- \( \displaystyle \lim_{x \to 0} \frac{e^{6x}-1}{x}\)
-
Evaluate the limits of
- \( \displaystyle \lim_{x \to 2} \frac{x-2}{\log (x-1)}\)
- \( \displaystyle \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\log \left ( x- \frac{\pi}{2} +1\right )}\)
- \( \displaystyle \lim_{x \to 2} \frac{x-2}{\log (x-1)}\)
Limit (BCB-Revised Edition 2020, Exercise 2, Page 379)
Evaluate the following.
Pages
SEARCH
LATEST
3-latest-65px
SECCIONS
- Continuity (3)
- Grade 11 (27)
- ICTMath (1)
- Limit (9)
- Mathematica (5)
- Mathematics (6)
- Projective Geometry (4)
- Quaadratic Equation (1)
- ReadingsinICT (10)
- SEE (2)
- Set (3)
- Thesis (5)
- Training (8)
No comments:
Post a Comment