Download GeoGebra Classic 5 from the link below.

https://www.geogebra.org/download

The complete the following activities

Define the points

A = (0, 0, 3)

B = (3, 0, 0)

O = (0, 0, 0)

Hide the objects A.B and O

Define a point

P=Point(Segment(A, O))

Hide the label

Define circle, points and angles

c:=Circle(P, Distance(A, B), yAxis)

C & D:= Intersect(xOyPlane, c)

Î±:=2Ï€ x(B) / x(D)

Î³:=Ï€ - Î± / 2

Hide objects c,C,D,Î±,Î³

Define slope

f(x):=(-z(P)) / x(D) (x - x(D))

hide f(x)

Define cone as a surface

cone:=Surface(u cos(v), u sin(v), f(u), u, 0, x(D), v, Î³, 2Ï€ - Î³)

Hide the label

Rotate the point D

R:=Rotate(D, Î³, zAxis)

S:=Rotate(D, -Î³, zAxis)

Hide the points R and S

Define arcs

arc1:=CircumcircularArc(R, C, S)

Set caption 2Ï€r

arc2:=CircumcircularArc(S, D, R)

Conditional visibility

arc1≠0

Hide the label

Define Circle

fullarc:=Circle(zAxis, D)

Conditional visibility

arc1=0

Hide the label

Define Segments

l:=segment(P,R)

s2:=segment(P,S)

Hide s2

https://www.geogebra.org/download

The complete the following activities

Define the points

A = (0, 0, 3)

B = (3, 0, 0)

O = (0, 0, 0)

Hide the objects A.B and O

Define a point

P=Point(Segment(A, O))

Hide the label

Define circle, points and angles

c:=Circle(P, Distance(A, B), yAxis)

C & D:= Intersect(xOyPlane, c)

Î±:=2Ï€ x(B) / x(D)

Î³:=Ï€ - Î± / 2

Hide objects c,C,D,Î±,Î³

Define slope

f(x):=(-z(P)) / x(D) (x - x(D))

hide f(x)

Define cone as a surface

cone:=Surface(u cos(v), u sin(v), f(u), u, 0, x(D), v, Î³, 2Ï€ - Î³)

Hide the label

Rotate the point D

R:=Rotate(D, Î³, zAxis)

S:=Rotate(D, -Î³, zAxis)

Hide the points R and S

Define arcs

arc1:=CircumcircularArc(R, C, S)

Set caption 2Ï€r

arc2:=CircumcircularArc(S, D, R)

Conditional visibility

arc1≠0

Hide the label

Define Circle

fullarc:=Circle(zAxis, D)

Conditional visibility

arc1=0

Hide the label

Define Segments

l:=segment(P,R)

s2:=segment(P,S)

Hide s2

It is Such a good article

ReplyDeleteKeep Motivating us on giving these nice articles... Wolfram Mathematica