Monday, January 27, 2020

Density of Love Inside Mathematics


Manipulate[
  GraphicsRow[{Show[
     ContourPlot[y == 1/x, {x, 0, 10}, {y, -1, 10}, Frame -> False,
      PlotRange -> {{0, 10}, {0, 10}}, PerformanceGoal -> "Quality"],
     Graphics[Table[{Red, Point[{b, 1/b}]}, {b, 0.1, a, 0.1}]]],
    Show[ContourPlot[x^2 + y^2 == 9, {x, -3, 3}, {y, -3, 3},
      Frame -> False, PlotRange -> {{-3, 3}, {-3, 3}},
      PerformanceGoal -> "Quality"],
     Graphics[
      Table[{Red, Point[{3 Cos[b], 3 Sin[b]}]}, {b, 0, a, 0.05}]]],
    Show[ContourPlot[y == Abs[-2 x], {x, -3, 3}, {y, 0, 3},
      Frame -> False, PlotRange -> {{-3, 3}, {0, 3}},
      PerformanceGoal -> "Quality"],
     Graphics[
      Table[{Red, Point[{b, Abs[-2 b]}]}, {b, -3, a - 3, 0.05}]]],
    Show[ContourPlot[x == -3 Abs[Sin[y]], {x, -3, 0}, {y, -3, 3},
      Frame -> False, PlotRange -> {{-3, 0}, {-3, 3}},
      PerformanceGoal -> "Quality",
      PlotLabel -> Style["Bed Dhakal, TU", 6, Black]],
     Graphics[
      Table[{Red, Point[{-3 Abs[Sin[b]], b}]}, {b, -3, a - 3,
        0.05}]]]}], {{a, 0.1,
    "y=1/x & x^2+y^2=9 & y=|-2x| & x=-3|siny|: Density of Love"}, 0.1,
    10}]]

No comments:

Post a Comment